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Project funded by Multiregional Soybean Checkoff Program and the United Soybean Board.  
 
Project title - Field phenotyping using machine learning tools integrated with genetic mapping  
to address heat and drought induced flower abortion in soybean.  
 
Participating institutions – Texas Tech University, Kansas State University, University of 
Missouri, and University of Tennessee.   
 
Goals & Objectives  
 
Long-term Goal – Develop soybean cultivars with 20 to 30% lower flower abortion under 
favorable to challenging environmental conditions, leading to about 10-15% increase in yield 
potential.  
 
Objectives (Year 3) 
 

• A novel image-based machine learning tool for quantifying flower abortion with minimal 
to no manual counting in soybeans grown in diverse environmental conditions. 

• Investigate physiological effects of drought stress on contrasting lines in both controlled 
and field environments to assess tolerance to adverse conditions (new activity). 

• Develop recombinant inbred line (RIL) populations using contrasting (low and high) 
flower abortion lines identified from different environmental conditions. 

• Identify key hub genes that regulate flower abortion using contrasting lines and 
functionally characterize using CRISPR/Cas9-mediated knockout (KO) technology. 

 
Objective 1 - A novel image-based machine learning tool for quantifying flower abortion with 
minimal to no manual counting in soybeans grown in diverse environmental conditions. 
 
Genotypes of high (CL0J17-3-6-8 and PI567638) and low (IA3023 and PI506862) flower abortion 
were selected from 2023/2024, plus two cultivars as checks, for all locations trials in 2025 (Figure 
1), planting happened on the following dates: 

- Texas Tech University: June 2nd 
- Kansas State University: June 9th 
- University of Tennessee: June 3rd  
- University of Missouri: June 24th (delayed by rain events) 

 
All locations are preparing QR codes for plots identification. The video imaging pre-testing for 
camera settings and position will start before flowering for method establishment and imaging 
improvements, to ensure we develop a robust tool that operated with minimal human involvement. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Models’ development 
 
Texas Tech University – Flower count 
 

For flower count annotations, soybean 
flowers were categorized into two classes, as 
shown in Figure 2. The total dataset used for 
training, validation, and testing is presented in 
Table 1. The flower detection model we 
developed utilizes Faster R-CNN architecture. 
We picked Faster R‑CNN due to its established 
capacity for agricultural object detection. The 
performance of the Faster R-CNN flower 
detection model was evaluated using a held-out 
test set comprising 352 images with 14,299 
annotated flowers (7,397 old and 6,902 new). 
Standard object detection metrics—including 
precision, recall, F1-score, and Average 
Precision (AP)—were used to assess model 
accuracy. The network had a precision of 89.6%, a recall of 86.5%, and a resulting F1-score of 
88.0%, which was computed across the two flower classes. These metrics also verify the 
robustness of the model for achieving a good balance between accuracy, sensitivity, and 
consistency, even under the uncontrolled and high-variance conditions seen on the field. Our 
Faster R-CNN detector achieved an average precision (AP) of 86% with an IoU threshold of 0.3 
(AP30) on the held-out test split, demonstrating high precision for detecting soybean flowers under 
a wide variety of field conditions as well. 
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Figure 1. Field trials conducted at University of Missouri (A), The University of 
Tennessee (B), and Texas Tech University (C).  

Figure 2. Soybean flower development stage 
used for flower detection. For two-class 
detection, flowers were categorized as new 
flowers (fresh petals) and old flowers (dried 
petals).  



 
For accomplishing flower 

enumeration by tracking, we evaluated 
several general-purpose and popular 
tracking algorithms (SORT, ByteTrack, 
OC-SORT, and DeepSORT) that have 
performed well in the MOTChallenge 
Dataset (Leal-Taixé et al., 2015). The 
results shown in Table 3 and Figure 3 
reveal an intriguing performance 
pattern among the algorithms 

evaluated. Although OC-SORT and ByteTrack achieved slightly better final flower count accuracy 
in terms of RMSE, SORT consistently outperformed both in terms of MOTA and RMSE. Given 
that MOTA is a composite metric that accounts for false negatives, false positives, and ID-
switches, SORT’s superior MOTA indicates a higher overall reliability in tracking flower identities 
across frames, even though MOTChallenge benchmarks typically favor OC-SORT and ByteTrack 
for their advanced occlusion handling. Our findings suggest that in the context of flower counting 
in agricultural fields, where camera movement is relatively constant and objects move predictably, 
the added complexity of algorithms 
designed for non-linear motion is 
unnecessary. Instead, SORT’s 
straightforward motion assumptions 
align well with these conditions, 
making it a more reliable choice. 
 
Temporal Dynamics of Model 
Flower Count 
 
The model successfully captured 
fluctuations in both new and old 
flower counts, providing detailed 
insights into flowering dynamics 
from testing genotypes with high 
(LG02-9050), intermediate 
(PI556511), and low (IA3023) 
flower manual counts, throughout the reproductive period. It predicted the onset of flowering, peak 
activity, and cessation. For IA3023 and PI556511 (Figure 4), flower counts on August 2nd were 
higher than those of LG02-9050, indicating a slower flowering initiation. The peak in flower 
production was more sharply defined for IA3023 and LG02-9050 on August 12, whereas PI556511 

Table 1. Dataset summary of the frames used for training, 
testing, and validation.  
Split  Images  New Flowers  Old Flowers  Total Flowers  

Train  1,054  19,257  20,705  39,962  

Val  352  6,670  7,194  13,864  

Test  352  6,432  6,864  13,296  

Full Dataset  1,758  32,359  34,763  67,122  

 

Table 3. Performance comparison between the Tracking 
algorithms in terms of RMSE (Root Mean Square Error), 
Average MOTA (Multiple Object Tracking Accuracy), 
and total number of ID Switches and False Negatives. 

Algorithm RMSE MOTA 
ID 

Switches 

False 

Negatives 

SORT 28.33 0.97 715 425 

OC-SORT 19.15 0.82 1650 3748 

ByteTrack 20.01 0.64 758 10778 

DeepSORT 139.80 0.25 2392 20650 

 



exhibited a broader peak spanning 
August 9th and 12th. The highest 
number of new flowers occurred on 
August 6th for IA3023, on both 
August 6th and 9th for PI556511, and 
on August 9th for LG02-9050. 
Notably, prior to the total flower 
count, LG02-9050 consistently 
exhibited higher counts of both new 
and old flowers compared to the other 
two genotypes, indicating its superior 
flower production capacity. This 
trend highlights the genotype’s 
greater plasticity to flower during the 
season.  
Tracking old flower counts proved 
valuable in identifying the transition 

toward flowering cessation, as the number of old flowers began to exceed new flower counts. For 
all genotypes, flowering slowed down after August 20th, which shows a synchronized end of 
flowering. This information is important for assessing how long each genotype remains in the 
reproductive phase and whether this duration is influenced by environmental conditions. These 
temporal flowering patterns can be influenced by planting date, environmental stress, photoperiod, 
pest or diseases pressure, and ultimately impact yield. 

 
 

Figure 3. Example demonstrating the algorithm’s flower 
tracking efficiency between frames. 

Figure 4. Model-based flower counts classified into two categories (new and old) from Kansas State 

University field trials for genotypes IA3023 (A), PI556511 (B), and LG02-9050 (C). 



Regarding total flower counts (Figure 5), the model successfully 
distinguished three distinct levels of flowering across genotypes 
for both new and old flower counts, providing dual validation of 
genotype-specific flowering performance in the field. However, 
for future application of new and old flower data to predict 
flower abortion in soybeans, enhancements are needed to ensure 
the new flower counts consistently exceed old flower counts, as 
would be expected biologically.  In this study, new flower count 
for genotypes IA3023 and PI556511were lower than old flower 
counts, which may indicate limitations due to occlusion or 
insufficient field of view, given that only a single camera was 
used for this analysis. The camera was positioned to capture the 
middle section of the plant, which included a substantial portion 
of the canopy, but may have failed to detect flowers in upper and 
lower regions as genotypes have different heights or leaf 
occlusion. To mitigate occlusion and improve plant coverage, a 
multi-camera setup will be implemented in 2025 trials. 
Enhancing the imaging platform would enable the model to 
detect a more comprehensive set of flowers, thereby increasing 
counting accuracy and improving the reliability of flower 
abortion predictions. 
 
While the current model effectively distinguishes between two 
classes flowers, our future work will expend this classification framework to include a third class 
for small pods. Our preliminary results testing how small pods could improve future predictions 
for flower abortion are shown in Figure 6. The same genotypes studied for two-class model were 
quantified for new, and old flowers and small pods. It is possible to track the transition from new 
flowers to old flowers and then pod formation at each time point (Figure 6). The developmental 
sequence provides critical information for predicting the dynamics of flower abortion in soybeans 
under varying environmental conditions and may help identify atypical responses triggered by 
stress events. A paper detailing our two-class model findings has been written and is in the final 
stages of review for submission. A second paper, focusing on the three-class model and occlusion 
quantification, is currently being developed. 

Figure 5.  Total counts of 
new and old flowers for the 
genotypes IA3023 (A), 
PI556511 (B), and LG02-
9050 (C) cultivated in 
Kansas State University in 
2024. 

Figure 6. Soybean counts of new and old flowers and pods during the flowering phase in August 
2024 for genotypes IA3023 (A), PI556511 (B), and LG02-9050 (C). 



Kansas State University – Pod count 
 
For pod count model development, we have further fine-tuned our prior model for pod 
segmentation and tracking, while also setting up the ground for numeric model evaluation. To 
achieve this, we have manually annotated 13 videos from 3 locations using the CVAT tool. Each 
annotated video has a resolution of 608x1080 at 24 frames per second. The set of annotated videos 
(Table 4) represents an important resource for the project as it allows both model training and fine-
tuning as well as model evaluation. To the best of our knowledge, this dataset is the largest of its 
kind in literature, and ensures diversity in terms of locations, genotypes, irrigation regime, pod 
stage, video quality, among others, making it ideal for the task at hand. This diversity can be clearly 
seen from the last two columns of the table below, which show the number of pods manually 
counted in the field and the number of pods manually counted in videos (through annotating and 
tracking pods manually using the CVAT tool).   
 
 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Location Video 
Name 

Replicate Irrigation 
regime 

Genotype #Pods 
manually 

counted in 
the field 

#Pods 
manually 

counted in 
the videos 

Texas 2212_43 2 Drought K17-6388 4416 1245  
3112_47 3 Irrigated K17-6388 4416 1026  
1102_03 1 Irrigated IA3023 2496 963  
3102_5 3 Irrigated IA3023 2496 1019  

1112_28 1 Irrigated K17-6388 4416 1694  
2202_4 2 Drought IA3023 2496 1016 

Kansas 5_5 1 Dryland PI556511 1728 937  
4_10 4 Dryland IA3023 1984 1116  
2_10 2 Dryland PI556511 1728 1100  
5_11 3 Dryland LG05-4832 2048 455  
10_4 1 Dryland IA3023 1984 1358  
1_2 1 Dryland LG05-4832 2048 623  
5_11 3 Dryland LG05-4832 2048 526 

Missouri Br24002 1 Dryland IA3023 2560 1257  
Br24119 1 Dryland LG05-4464 2688 1649  
Br24034 1 Dryland PI548193 

 
188 

Total      16,172 

 

Table 4. Dataset of pod annotation from different locations in 2024 trails. 



The last two columns in the table also show that there is a significant difference between the two 
sets of counts. This can be attributed to the fact that only one side of the plant is being captured in 
videos and thus many of the actual pods counted in the field are occluded. To account for this, 
during this year of the project, the plants will be imaged on both sides. We have used the annotated 
videos to fine-tune our prior YOLOv8 model and to evaluate its results. Numeric evaluation shows 
good results in terms of the standard variants of average precision used as a metric for object 
detection/segmentation – AP 59.05%, AP50 74.08%, and AP75 63.05%. After the model was 
trained/fine-tuned for the object segmentation task, we have used ByteSORT to track the pods 
across the frames. The linked video (Soybean Pod Tracking) shows a demonstration of how the 
tracking approach performs.  Specifically, the model is able to detect 1033 pods while the actual 
manual count based on the corresponding video (IA3023 2nd replicate irrigated) is 963. The 
difference can be explained by the fact that the annotators were asked to count only the pods 
belonging to the front row of the camera, while the model is also detecting and counting some 
pods which were further back.  For some specific examples of the tracking capabilities of our 
model, we are showing a sequence of images in Figure 7. The sequence shows three frames which 
are five frames apart from each other in the video. We can see the pods being numbered as well as 
the pods having the same number through the frames. All pods which were not detected have been 
detected in the next frame (this behavior is due to how the parameters for the tracking algorithm 
are set).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Currently, we are working on a paper that will document the data collected during the 2024 harvest 
season, the annotated dataset that we assembled as well as the model we trained and evaluated 
using the dataset. We have all the tools in place to count soybean pods from field videos, and we 
believe that improving the capturing of the pods in the videos (by imaging multiple sides and using 
multiple cameras) will further improve the results, taking us closet to the actual pods counts in the 
field.  
  
 

Figure 7. Example illustrating the model’s performance for counting pods. 



Objective 2 - Investigate the physiological effects of drought stress on contrasting lines for 
flower abortion under controlled conditions. 
 
This study aimed to assess the flowers abortion 
among six soybean lines including PI506862, 
PI567638, IA3023, CL0J7-3-6-8, PI548318, and 
PI80837 under progressive water-deficit stress 
(dry-down phase) and subsequent re-watering 
recovery (recovery phase) in a greenhouse setting 
at the West Tennessee Research and Education 
Center, University of Tennessee (Figure 8). On 
April 10, 2025, seeds were sown in a 1:1 mixture 
of sand and Lexington silt loam at a 2 cm depth, 
then thinned to one plant per pot at 13 days after 
planting (DAP). Fertilizers were applied at 12 
DAP (0.075% V/V liquid, 0–10–10) and 24 DAP 
(0.06% W/V water-soluble, 24–8–16). Plants 
were maintained under a 14-hour light/10-hour 
dark cycle and received 200 mL of water daily 
during the pre-treatment phase. At 28 DAP, when 
plants had 4–5 trifoliate leaves, the dry-down 
(DD) phase began; pots were saturated, drained to 
their pot capacity, enclosed in 15-L plastic bags 
(Fig. 1) to eliminate the evaporation, and fitted 
with watering tubes for controlled watering and 
monitoring plants transpiration/water loss. Based 
on daily transpiration rate (TR), four pots per 
genotype were designated as well-watered 
(WW)/controls, and six as DD treatments. The 
DD plants were watered only if TR exceeded 80 
g/day, following Shekoofa et al. (2013). Stress 
progression was monitored using normalized 
transpiration rate (NTR), with <0.10 indicating 
the endpoint of available soil water. Recovery 
occurred on days 36–41 after planting by re-
watering DD pots with 350 mL to full capacity. 
Data were collected daily including number of 
flowers, flower rate per day, and wilting score (0–
5) during stress and recovery phases. The number 
of nodes and pods was recorded at the end of the dry-down phase and again at experiment 
termination (June 18, 2025). Data is being processed, graphs and outcome will be incorporated in 
the final report.  
 
 
Objective 3 - Develop recombinant inbred line (RIL) populations using contrasting (low and 
high) flower abortion lines identified from different environmental conditions. 

Figure 8. The University of Tennessee, 
2025 soybean flowers abortion’s 
greenhouse setup at WTREC. Top: A week 
after planting and below: Later after the 
drought treatment was applied. Photo 
credit: The Shekoofa’s lab 



The greenhouse experiment (Figure 9) was planted on April 22nd, with plants grown in pots 
arranged in four rows, each approximately 4 feet in length and containing 8 pots. Video recordings 
began at the R1 growth stage. Manual counting of old and new flowers is being conducted within 
a 2-foot stretch in each row, in parallel with video recording, twice a week. The videos are captured 
using two GoPro cameras mounted on a hand-held PVC pipe frame. Student employees are being 
trained on the greenhouse experiment protocols prior to the commencement of the main field 
experiment. We are continuing the generation advancement of crosses between putative soybean 
genotypes with contrasting levels of flower abortion. F₂ seed is currently being harvested in the 
greenhouse. The seed will be inventoried, and a selected subset will be sent to a winter nursery in 
Puerto Rico for further advancement, with the goal of developing F4 or F5-derived lines for field 
evaluation in the summer of 2026. 

Objective 4 - Identify key hub genes that regulate 
flower abortion using contrasting lines and 
functionally characterize using CRISPR/Cas9-
mediated knockout (KO) technology. 
 
To investigate the molecular basis of flower abortion in 
soybeans, we performed a comparative transcriptomic 
analysis of high-abortion (HA) and low-abortion (LA) 
genotypes across four floral developmental stages: bud, 
close petals, open flower, and dry flower. Raw RNA-
seq reads were quality-checked, trimmed, and aligned 
to the soybean reference genome. Gene-level counts 
were generated, followed by normalization and 
differential expression analysis using DESeq2. The 
principal component analysis (PCA) (Figure 10) 
revealed a clear separation of samples according to 
genotype and developmental stage, with PC1 
accounting for 64% of the variance and effectively 

distinguishing HA and LA groups.  
 

Furthermore, bar plot analysis of 
differentially expressed genes (DEGs) 
(Figure 11) showed comparable 
numbers of up- and down-regulated 
genes across stages in both genotypes, 
with subtle variations in magnitude 
reflecting the complexity of 
transcriptional responses associated 
with flower abortion. A comprehensive 

Figure 9. Greenhouse trial for crossing to 
develop a recombinant inbred line (RIL) 
population. 

Figure 10. Principal component analysis of soybean flower 
transcriptome. 



heatmap of DEGs (Figure 12) highlighted distinct gene expression clusters (C1–C6) associated 
with specific floral stages and abortion phenotypes, indicating stage-specific transcriptional 
reprogramming. We are currently advancing functional enrichment and network analyses to 
identify key candidate genes and pathways driving these contrasting phenotypes. 
 
 
 
 
 

 
 
 

 

Figure 11. Bar plots depicting the total, up and 

downregulated DEGs. 

Figure 12. Heatmap depicting the 


