
Project report (first quarter Jan 1 2023 to March 31, 2023)  

Project funded by North Central Soybean Research Program  

Project tile - Field phenotyping using machine learning tools integrated with genetic mapping  

to address heat and drought induced flower abortion in soybean  

Participating institutions – Texas Tech University, Kansas State University, University of 

Missouri, and University of Tennessee   

Goals & Objectives  

Long-term Goal – Develop soybean cultivars with 20 to 30% lower flower abortion under 

favorable to challenging environmental conditions, leading to about 10-15% increase in yield 

potential  

Objectives (Year 1)  

• Explore the genetic diversity in flower abortion under different soil moisture and climatic 

conditions using a large diversity panel  

• Develop an image-based field phenotyping system and deep-learning tools to precisely 

document temporal dynamics in flower abortion and pod retention in genetically diverse 

soybeans  

• Discover environmentally stable and region-specific genomic regions controlling flower 

abortion in diverse soil types, moisture, and climatic conditions  

Progress achieved  

Objective 1 - Explore the genetic diversity in flower abortion under different soil moisture 

and climatic conditions using a large 

diversity panel  

A total of 350 diverse soybean lines were sent 

for winter nursery seed increase at Costa Rica 

in December 2022. They were planted in 

foundation seed increase plot (total of 150 ft 

row length for each line) to make sure enough 

seeds (5 lbs) is available for field planting at 

multiple locations in summer 2023. Among 

the 350 lines, 310 lines had good germination 

and plant stand in the seed multiplication 

field. We expect to receive sufficient seeds 

for these lines in late April for 2023 

summer planting.  

Figure 1. Winter nursery seed increase for the 

project materials at Costa Rica.   

 



 Genetic diversity among the group 3 and 4s are targeted in terms of genetic structure   

The 310 lines represents genetic diversity of the USDA soybean germplasm collection in 

maturity group III and IV. We have whole genome sequencing data for this set with an average 

sequencing coverage of 20x. Approximately, 0.6 million high quality SNPs and 0.5 million 

In/Del are available for robust GWAS to identify genetic loci and genes regulation of stress 

resilience and flower abortion in soybean. The average SNP and In/Del density together is about 

1 marker/Kbp.   

Preparation of field trails at multiple participating locations  

The experimental site at the University of Missouri for this project is located in the Bradford Research 

Center (Columbia, MO). Three-acre field was reserved in the farm for this project. We will collect soil 

samples to identify basic soil properties. The field will be prepared for planting in April. The proposed 

~310 diverse lines will be planted in mid-May to early-June, depending on the local weather.   

The experimental site to evaluate the diversity panel under rain-fed conditions at Kansas State 

University will be located at the Agronomy North Farm near Manhattan, KS. Three and one-half 

acres have been reserved for planting the experiment. Field preparation for planting is underway 

and soil samples will be taken following planting. We expect to receive seed of the panel from 

the winter nursery in April or early May (shared by University of Missouri colleagues) with an 

expected planting date in May.  

The experimental site in University of Tennessee that the experiment will be carried out will be 

located in West TN Research and Education Center (WTREC) under rainfed condition. We have 

secured a little over 2.5 acres for this study in 2023. The soil samples collection is in progress 

and detailed information will be documented about the field. The burndown will be done in a 

couple of weeks. We will be receiving 310 soybean lines seeds in from University of Missouri 

colleagues and planting will be done in early May.  

The experiment will be conducted on the Quaker Avenue Research Farm at Texas Tech 

University in Lubbock, TX. The experiment will be carried out under sub-surface drip irrigation 

(SDI). Multiple irrigation zones have been obtained for this trail, which total to an area of 3 

acres. Soil samples will be collected and analyzed along with documentation of the field history 

over prior years. Herbicide applications for burndown will be completed in April followed by a 

pre-emerge herbicide application in mid-May prior to planting of the ~310 soybean lines 

thereafter.  

Objective 2 - Develop an image-based field phenotyping system and deep-learning tools to 

precisely document temporal dynamics in flower abortion and pod retention in genetically 

diverse soybeans  

Before the field season begins the team has taken good advantage of greenhouse grown soybean 

plants and other existing datasets to develop a robust machine learning tool to detect flower 

number and rate of abortion under field conditions.   



The team is implementing two general strategies for enumerating aborted flowers and has begun 

to apply them to greenhouse grown soybean plants.   

1. Pre-abortion: Counting flowers on the plant and comparing the counts over time 

2. Post-abortion: Collecting and counting aborted flowers over time 

 

Strategy 1: We have developed a preliminary imaging protocol by which images of greenhouse 

plants are collected from multiple views and with high enough resolution (e.g., 4K x 6K) such 

that the smallest flowers are comprised of a minimum of 30 pixels. Our proposed strategy would 

then detect the flowers in two stages. 

a) Subsample acquired image and feed it to a node-detection network. Subsampling the 

original high-resolution image would make it possible for the detection network to ingest 

it without compromising image fidelity.  

b) Having the nodes localized from the previous step, crop the original image, and feed the 

resulting high-resolution sub-images to a flower-detection network. This ensures that 

even the smallest flowers are comprised of a sufficiently large number of pixels and yet, 

the cropped input images are small enough for the network to ingest. 

 

 

 

 

 

 

Figure 2. Strategy 1: Flowers are detected by first localizing the plant nodes. 

 

Node-Detection Network: As an initial approach to detecting nodes, we have employed the Faster 

R-CNN architecture. We started by pre-training our model with a dataset provided by the study in 



2023 that focuses on detecting nodes on Eggplant, Chili, and Tomato plants.1 A summary of and 

examples images from this dataset can be seen in Table 1 and Figure 3, respectively. 

 
Table 1: Summary of the external dataset used for pre-training the Faster R-CNN model. 

Title Number of Images 
Total Number of 

Nodes 

Chili 50 304 

Tomato 350 2403 

Eggplant 180 1748 

All 580 4455 

 

 
Figure 3: Examples of nodes in the dataset used for pre-training the Faster R-CNN model. (a) Chili; (b) 

Tomato; (c) Eggplant1. 

Moreover, we constructed a dataset of 154 images that were captured from our greenhouse 

soybean plants before March 1st. These were subsequently annotated and divided into training 

and test sets for model development. Notably, during our annotation process, we separated the 

nodes into two distinct categories: nodes with flowers and nodes without flowers. Further details 

about this dataset can be found in Table 2. 

 
Table 2: Summary of the first dataset captured from our plants and used for model development. 

Image Set 
Number of 

Images 

Nodes with 

Flowers 

Nodes 

Without 

Flowers 

Total Number 

of Nodes 

Training 123 817 106 923 

Test 31 175 25 200 

 
1 https://doi.org/10.3390/agriculture13020473 

https://doi.org/10.3390/agriculture13020473


All 154 994 129 1123 

Initial results of the pre-trained model on our test set, without any further training on our training 

set, reveal that the model has a relatively good understanding of nodes. However, it still struggles 

in densely populated scenes. Moreover, the majority of the predicted bounding boxes by the 

model fail to enclose the flowers, which may be critical to our flower detection strategy; see 

Figure 3. 

 

  

  



  
Figure 3: Initial results of the pre-trained model on some of the images from our test set. The red and 

blue bounding boxes indicate ground-truth and model’s predictions, respectively. 

We then proceeded to fine-tune the pre-trained model for our application by training it on our 

training set. As a result, the model exhibited improved performance on our test set, particularly 

in densely populated scenes. Furthermore, the predicted bounding boxes were more suitable for 

our flower detection strategy. Figure 4 demonstrates the performance of the model on the same 

images depicted in Figure 3. 



  

  



  
Figure 4: Results of the fine-tuned model on our test images. To prevent overcrowding, only the model’s 

predictions are displayed. Ground-truths are displayed in Figure 3. The blue and purple bounding boxes 

are indicators of nodes with and without flowers, respectively. 

By March 16th, a new dataset of 466 images was compiled to be annotated for further model 

development. This dataset includes several characteristics that the model had not encountered 

before: 

1) Images from a different greenhouse with more congested backgrounds; Figure 5A. 

2) New soybean plant varieties; Figure 5B. 

3) Nodes with several matured soybean pods; Figure 5C. 

The existing model's inference on this dataset indicates that the model’s ability to generalize is 

reasonably good as it is able to locate most of the visible nodes in the new images; see Figure 5. 

However, as seen in Figure 6, the model also outputs several more False-Positives (FP) and 

False-Negatives (FN) in the new images. 

 

   

C 



  

 
Figure 5: Results of the existing model on the new dataset. The blue and purple bounding boxes indicate 

nodes with and without flowers, respectively. A) Images from a new location; B) New soybean plant 

varieties and C) Nodes with several developed soybean pods. 

                   
Figure 6: Examples of false positives and false negatives (two for each) from left to right. 

Future work includes: 

A B 

C 



1) Simplifying the annotation process for the new dataset, which contains three times more 

images than the previous one, by using the existing model's predictions (as shown in 

Figure 5) as preliminary annotations. Therefore, the annotators will primarily focus on 

refining the predicted bounding boxes and occasionally making additions or deletions. 

This approach will significantly accelerate the annotation process, which is essential for 

efficient model development. 

2) Exploring and implementing other state-of-the-art network architectures that may be 

better suited and capable of achieving superior performance for our application. 

3) Associating the model predictions with the ground truth flower and node data to ascertain 

the efficiency of the model predictions and the extent of refinement needed for models to 

be precise to allow for deployment under field conditions.   

 

Flower Detection Network: Similar to the node detection network, the flower detection network 

is also based on the Faster R-CNN architecture. Specifically, we used the Faster R-CNN 

implementation available in Detectron2 (a library containing state-of-the-art detection and 

segmentation algorithms made publicly available by Facebook AI Research). We trained an 

initial model based on a dataset published by Zhu et al. (2022).  A summary of the dataset is 

shown in Table 3, while the statistics on the training/validation/test subsets are shown in Table 4. 

and some sample images from the dataset are shown in Figure 7.  

 
Table 3. Summary of the dataset for soybean flower detection (Zhu et al., 2022)  

 
Table 4. Training/validation/test subsets used to train Faster R-CNN model for flower detection (Zhu et 

al., 2022) 

Subset Number of Images 

Training 1364 

Validation 152 

Testing 379 

Total  1895 



Figure 7. Examples of purple and white flowers in the soybean flower dataset used for training [Zhu et 

al., 2022], together with their manual ground truth annotations (shown below each original image)   

   

   

   

   
 

 



The Faster R-CNN model was trained for 1000 epochs (i.e., 1000 passes through the training 

data). The Average Precision for detections whose bounding boxes overlap by at least 50% with 

the ground truth bounding boxes (denoted as AP50) was 82.036 on the test images (and 82.767 

on the training images). Some sample predictions on test images are shown below, together with 

their corresponding ground truth annotations (the predicted and ground truth counts are also 

shown underneath each image).  

 

174_jpg.rf.5378b9d2c081dd05ff89526219b17ce3 

 
Predicted: 5     Ground Truth: 4 

         

 

     

479_jpg.rf.4338041f45054ad19f395fd546b2d261.jpg 

 
Predicted: 6         Ground Truth: 5 

 



 

 

218_jpg.rf.27de6be46a007b42bc7b1eebdffa4e96.jpg 

 
Predicted: 6     Ground Truth: 8 

      

 

246_jpg.rf.678e7cafd8806935305e2e0a907ca2d8.jpg 

 
Predicted: 4           Ground Truth: 5 

 

 

 

 

 

 



 

 

310_jpg.rf.b187a1946abf67d410ea9348cd3e9478.jpg 

 
Predicted: 5      Ground Truth: 5 

           

699_jpg.rf.75b9bf389e0b17be4cbfe2d0509a955b.jpg 

 
Predicted: 8      Ground Truth: 9   

 

 

 

 

 

 

 

 



 

 

904_jpg.rf.9474ccfa417ab167fe2ad0a883bc8e0e.jpg 

    

As can be seen, the predictions closely match the ground truth annotations, although the model 

can predict both false positives and false negatives. However, a closer analysis of the results is 

needed as the annotations themselves may not always be consistent (e.g., some buds are counted, 

while others are not counted, or some dried flowers are counted, while others are not counted). 

For example, in the last image above, the model correctly identifies 5 flowers, while the 

annotation includes only 4 flowers. That is the case for other images. 

 

We used the model trained on the data from Zhu et al. (2022) on images of nodes with flowers 

extracted from images that the team collected, which have varying resolutions compared to the 

images in the dataset the model was trained on. As can be seen in the figure below (which shows 

two examples of predictions on the left and the corresponding original images on the right), the 

model identifies some flowers but fails to identify other flowers, suggesting that we will need to 

fine-tune the current model on a variety of images of different resolutions.     

  

  
 

  

  

 Future work includes: 

1) Fine-tuning the original model trained on images from Zhu et al. (2022) to images 

selected from our images to ensure the model performs well on our images and is robust 

to variations in image resolution and other image variations (e.g., images with smaller or 

larger number of flowers, images with more or less leaves, etc.) 

2) Exploring and implementing other state-of-the-art network architectures (e.g., YOLOv7) 

that may be better suited and capable of achieving superior performance for our 

application. 



Strategy 2: We have developed a preliminary imaging protocol by which the aborted flowers 

from greenhouse plants are collected, imaged, and annotated as shown below.   

 

  

 
Figure. Strategy 2: Aborted flowers are collected, imaged and counted. 

 

 

Annotated images are used to train a network for aborted flower detection and counting. The 

network used is also a Faster R-CNN network available in Detectron2. To gain an understanding 

of what plate color may lead to best predicted counts for aborted flowers, we imaged aborted 

flowers on plates of three colors: Sky Blue (2 images), Deep Blue (2 images), and Black (3 

images), and we trained a model for each plate color (we used one image for training and one for 

test). Furthermore, we trained a model based on all imaged plates regardless of the color (three 

images of three different colors were used for training and three images for testing). A total of 

168 aborted flowers were annotated on the 7 plate images. Statistics about the number of aborted 

flowers on each plate color are shown in the table below:   

  



Plate Color  Aborted Flowers Annotated  

Deep Blue  50  

Sky Blue  50  

Black  68  

Total  168 

  

  

Sample predictions of the models on train/test images are shown below.  
  
Deep Blue Model  

 
Train       Test  

  

  

  

  
Sky Blue Model  
  
Train     Test  

  

  

 
 



Black Model  
  
Train                                       Test 

   

 

 
All plates/colors Model  
  
Training images  

  

 
 

 

Test images 

      

 

 

Overall, the models perform well considering the very limited data they are trained on, but a 

close examination of the results shows some false positives and false negatives as can be seen in 

the example below:   



  

  

Comparing the four models we trained, we see better results for the models that are trained with 

a single-color plate image. However, the final goal is to train models that are robust to variations 

in plate color and work for a variety of backgrounds that resemble what one may observe on the 

ground in the greenhouse or potentially in the field. Given the promising results we got with only 

7 annotated images (including 168 aborted flowers), we expect very accurate results, highly 

correlated with the ground truth annotations with more training data. 

 
 

 Future work includes: 

1) Annotating more image plates and training a model that is robust to plate 

color/background.  

2) Exploring transfer learning from a model that the team has trained in prior work for 

detecting sorghum seeds spread on a piece of paper.  

3) Exploring and implementing other state-of-the-art network architectures (e.g., YOLOv7) 

that may be better suited and capable of achieving superior performance for our 

application. 
 

Objective 3 - Discover environmentally stable and region-specific genomic regions 

controlling flower abortion in diverse soil types, moisture, and climatic conditions  

Organ abscission (in this case pistil and flower) is an important process that regulates the 

detachment of flower from the stem. However, the underlying genetic mechanism of flower 

abscission is largely unknown in plants. To understand the flower abscission in soybean we 

surveyed the key determinant genes involved in flower and flower organ abscission in 

Arabidopsis and identified orthologs in soybean genome. The majority of genes expressed in 

abscission layer in the model organisms are associated with hormone biosynthesis/transport and 

nutrient uptake. We have selected a subset of these genes (mainly transcription factors) involved 

in hormone regulation. We will conduct a gene-based haplotype analysis to select the group of 



lines and correlated the large effect variants with the phenotypic data. The confounding effect (if 

any) (if any) of flowering QTLs will be compared for the selected genes.  

 


