ISA 2023/24 Research Project

Estimating crop yields and carbon intensities from earlier planted soybeans and potential synergies with partial corn residue harvest

Update Report by Salin 247, Inc.

for the

Iowa Soybean Association

April 1, 2024

Project objectives

The primary objectives of the "Estimating crop yields and carbon intensities from earlier planted soybeans and potential synergies with partial corn residue harvest" project are to (1) evaluate the soybean yield and soybean carbon intensity (CI) impact of planting soybeans early in the spring, (2) evaluate the impact of corn stover partial removal prior to soybean planting on the soil suitability for planting and on soybean yield and soybean CI values, (3) complete an economic evaluation of early-planted, soybeans under the two corn stover management options, (4) evaluate the performance (e.g., acres planted per day, energy use, navigation performance) of an autonomous Salin 247 planter, (5) conduct the trials on actual Iowa farm fields, and (6) communicate the project results to the Iowa soybean industry.

Summary of project progress

- The original plan was to build and use for the project an 8-row autonomous planter. Instead, a second 4-row (30" row spacing) planter (V3) has been built. Based on learnings from last season, the new machine has several enhancements compared to the planter (V2) last season. Both 4-row planters will be used for the project
- Verbio agreed to help find project fields, and they provided a list of candidate growers, but none of those options worked out
- Several candidate growers/fields were tentatively enrolled in the project last fall but four of those options ultimately did not work out
- There was an original goal of six fields. Nine fields have been selected with an average size of 22 acres
- Four of the nine fields will have corn stover removal treatments
- Two of the nine fields have been strip-tilled
- Two of the nine fields will have fall and spring tillage
- One field has cover crops
- RTK GPS drone images have been taken and stitched for each of the nine fields
- Shape files of plot areas have been created in Ag Leader SMS software
- Project plots in fields have not yet been physically flagged but will get flagged in the next week or so
- Plot shape files have been sent to ISU so soil sampling can be scheduled and soil sensor installations can begin
- Planting details are being gathered from growers including desired planting population, number of end rows, how that are going to provide seed, and other information
- We will start the "early" planting as soon after April 1 that conditions are suitable. There is one grower that would not like us to plant prior to April 15, the FCIC's "earliest planting date" for northern Iowa.
- ISU will install soil sensors shortly before and shortly after planting.

Salin 247 autonomous planters

For the 2024 OFT project, Salin 247 will be using two autonomous, 4-row (30" row) planters (named V2 and V3). The planter (v2) used for last year's ISA project has been upgraded to address GPS and controller issues from last season. A new planter (V3) has been built with several upgrades including all-wheel steering (V2 is a skid steer machine), suspension system, telescoping toolbar, upgraded batteries, upgraded hydraulic system, and electronic improvements. Both planters will be using upgraded navigation software.

Salin 247 has also developed new path planning software. The software allows us to more efficiently and accurately create path plans for planting and for post-emerge operations. Our new approach requires that we obtain RTK GPS coordinates of each trial field. High resolution coordinates help improve the accuracy of navigation.

Salin 247 planters ready to go to the field (V2 on left, V3 on right)

Status of project tasks

The focus of work to-date has been on project planning. Below is the list of key project tasks along with a status update where applicable. Early planting of soybeans will begin as soon after April 1 that soil conditions are suitable (i.e., soil temps greater than 50 degrees Fahrenheit and around 35% soil moisture at planting depth), and the grower gives their approval. One grower does not want us to planter prior to April 15, the FCIC's earliest planting date to be eligible for replant seed cost coverage.

Broad tasks	Key tasks	Description					
Project planning and grower recruitment	Collaboration with ISA Research Center for Farm Innovation	Work with the RCFI on the details of an implementation plan including designing the trials and recruiting growers for the project Status: ISA agronomists worked to identify potential collaborative growers. Two growers were recruited for the					
	Collaborate with Verbio on finding growers	project.Verbio, a cellulosic energy producer in Neveda, IA, agreed to help us find collaborative growers for the projectStatus: Verbio was not able to recruit any growers for the project.					

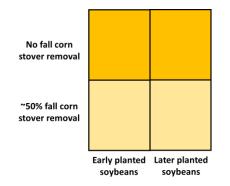
Dro	iort	tack	status	<u> </u>	hf Λ	nril	1	2021
PIO	eci	LUSK	status	us c	JA	ρп.	L,	2024

Broad tasks	Key tasks	Description						
	One-on-one conversations	Identify a set of potential collaborative growers during the						
	with potential collaborator	summer of 2023 and speak with them one-on-one about the tra						
	growers	protocols and expectations. Get firm commitments from six						
		growers and two to three backup growers prior to 2023 harvest.						
		Status: Commitments have been made by 8 growers for 9 trial						
		fields (one grower will have 2 plots).						
2023 fall field	Arrange for corn stover	Make arrangements for custom corn stover removal on						
work	removal on collaborative farm	designated areas of collaborative farm fields and at specified						
	fields	removal rates						
		Status: We did not need to do any corn stover removal in the						
		fall. Selected growers already had done removals.						
	Conduct corn stover removal	Complete the corn stover removal and transportation to market						
		Status: Stover removal not needed last fall.						
Planter design,	Planter design	Based on learnings from past and current ISA-funded projects,						
construction, &		Salin 247 has concluded that a 20-foot toolbar planter (i.e., 8 30"						
testing		rows) has economic advantages over a 10-foot planter toolbar						
testing		(i.e., 4 30" rows). Significant design changes and a different						
		energy management approach are needed to accommodate a						
		20-foot planter toolbar.						
		Status: Instead of building an 8-row planter, two 4-row planters will be used.						
	Dianatan ann atruation							
	Planter construction	Source components needed for the 20-foot planter toolbar and						
		construct an 8 30" row autonomous planter that will plant at 5.5						
		mph (i.e., plant at ~10 acres per hour)						
		Status: The second 4-row planter has been built and is being						
		tested. The new planter has many enhancements based on						
		learnings from last season.						
	Planter testing	Prior to starting project planting, conduct appropriate testing in						
		the shop and in the Salin 247 test field						
		Status: Field testing of both planters is still underway as of						
		4/1/2024.						
2024 spring work	Obtain high resolution field	Using a drone with RTK GPS and a high resolution camera,						
	boundaries & field maps &	capture high resolution field images						
	create navigation paths	Stitch images into one high-resolution field map.						
		Identify project plot area for each field						
		Generate navigation paths for planting						
		Create shape files for plot areas and for the navigation paths						
		Define early planted and late planted areas of the plots						
		Status: High resolution field maps have been created for each						
		of the nine project fields. Plot areas have been identified. Not						
		all early and late areas have been identified yet						
	Soil testing	ISU plans to take soil samples on selected fields.						
	Son testing	Status: Soil samples have not yet been taken, but the plan is to						
		take them prior to planting. ISU will schedule this task.						
	Install soil temperature and	Soil temperature and moisture sensors will be installed. Iowa						
	moisture sensors	State University will select the appropriate sensors to be used						
		Status: Iowa State has ordered and received 72 soil sensors.						
		They will be installed shortly before or shortly after planting.						
		ISU wants to install the sensors on 3 project fields.						
	Soil temperature and	Weekly soil temperature and moisture data for all 24 treatments						
	moisture data collection	will be begin in early spring and continue through the growing						
		season						
	Early-season planting	Soybeans will be planted on half of each of the six cooperator						
		fields early in the season (as soon as soil moisture conditions						
	1	allow)						

Broad tasks	Key tasks	Description						
	Later-season planting	Soybeans will be planted on the other half of the six fields at						
		least 14 days past the early-season planting date for each						
		respective field						
	Planter performance data	Planter performance data (e.g., acres planted per hour, energy						
	collection	use, navigation accuracy) will be collected during planting						
2024 growing	Soil nitrate nitrogen data	Weekly soil nitrate nitrogen levels will be collected for each of						
season work	collection	the 24 treatments starting one to two weeks prior to planting						
		and extending through the growing season						
	Weather data collection	Temperature and rainfall data will be collected throughout the						
		growing season. Temperature data will come from the closest						
		weather reporting site, and rainfall data will come from Climate						
		Corporation reported rainfall estimates by field						
		Status: Climate Corporation data collection will begin April 1.						
2024 fall work	Crop yield data collection	Cooperator growers will collect yield monitor data and provide it						
		via a designated data format						
Modeling, data	Data management and	Complete the collection and cleaning of all field data and						
analysis and	analysis	complete the data analysis for the project						
project								
communications								
	Semi-annual reporting	Provide two updates via the ISA semi-annual reporting process						
	Field day	A field day will be scheduled for the summer of 2024 to provide						
		an update on the project and report planting performance						
		findings						
	Final report	A final report of project findings will be prepared and provided to						
		the ISA once all harvest data has been collected and the data						
		analysis completed by December 2024						

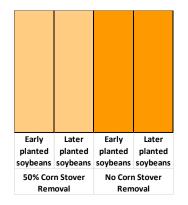
Trial fields

Below is a table listing the nine project fields. These nine fields are being provided by eight different growers. Note that one of the "growers" (Field 1) is Iowa State University.


2024 Early Planted Soybean Project Fields

					Area of 50%			Field	Early	Late
		Approx.			stover	Area of early	Drone	boundary	planting	planting
Field	Field location	acres	Tillage	Stover status	removal	planting	images	shape file	date	date
1	SW corner 300th & Violet	18	Strip-till	0% removal	None	TBD	Yes	Yes	TBD	TBD
2	Half mile north of 160th & 730th Ave	20	No-till	0%/50% removal	South half	TBD	Yes	Yes	TBD	TBD
3	NE corner of 300th & Highway 169	18	No-till	0%/50% removal	South half	TBD	Yes	Yes	TBD	TBD
4	NE corner of 300th & Highway 169	18	No-till	0%/50% removal	South half	TBD	Yes	Yes	TBD	TBD
5	NW corner 120th & Quail Ave	20	No-till	0%/50% removal	West half	TBD	Yes	Yes	TBD	TBD
6	SE corner 260th & 650th Ave	18	Strip-till	50% removal	All	TBD	Yes	Yes	TBD	TBD
7	NW corner 280th & 730th Ave	27	No-till	50% removal	All	TBD	Yes	Yes	TBD	TBD
8	SW corner 400th & 580th Ave	18	Fall rip, spring FC	0% removal	None	TBD	Yes	Yes	TBD	TBD
9	Half mile east of 250th & U Ave	40	Fall rip, spring FC	0% removal	None	TBD	Yes	Yes	TBD	TBD
		197								

The original aim was to find six no-till fields where half of the field would have 50% residue removal. We were able to identify seven no-till fields but only five had an option to do 50% residue removal. Recently we learned that strip-till was done on two of the fields (Field 1 & 6). We were planning to do residue removal on one of those fields, but it was determined not to be feasible. The table below provides some useful information on the nine project fields. All the fields grew corn in 2023.


Field trial design

Below is a depiction of the original field trial design with two planting date treatments ("Early planted" and "Late planted") as well as two corn stover removal treatments ("No fall stover removal" and "50% fall stover removal"). The size of plots is going to be determined by the size and shape of the selected fields.

Original field trial design

Note that two of the fields with residue removal needed an alternative design. Their design is shown below.

Planting schedule

The goal is to begin planting the "early" treatments as soon as soil conditions are suitable but after April 1. The timing of planting for any given field will also depend on the timing of pre-plant herbicide applications by the growers and by cover crop termination for fields that planted cover crops last fall. Planting could also be impacted by soil sampling scheduling.

Planter logistics

For most of the project fields, our plan is to operate both of our 4-row (30" row spacing) autonomous planters. This will require leasing a pickup and flatbed trailer.

Some growers would like to provide us seed in bulk but not have to tie up their seed tender. For those growers, we will have a bulk box where grower seed can be put prior to going to the field.

Data collection

lowa State University is wanting to install soil sensors on three of the project fields. A total of 72 soil sensors are available. The sensors will be logging soil temperature, moisture, and other data several times each day.