Managing Soybean Iron Deficiency Chlorosis with Agronomics and Economics

Maykon da Silva and Seth Naeve

Introduction

Objectives

- Iron Deficiency Chlorosis (IDC) is one of the most yield damaging maladies of soybean in western Minnesota.
- IDC is a soil-borne abiotic stress caused by a lack of soluble iron (Fe²⁺) to the plants.
- IDC symptoms include interveinal chlorosis and stunting of the growth.

1.Examine tradeoffs and interactive effects

rates across a range of IDC stress levels. 2. Evaluate the impact of variety selection,

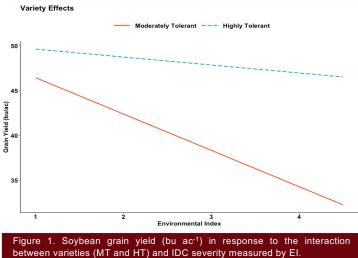
seeding densities, and iron chelate rates on

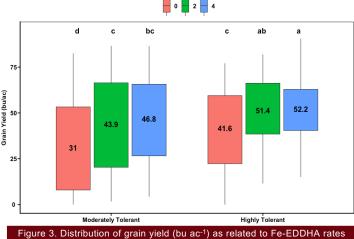
between varieties, populations, and iron chelate

Iron Chelate Rate Effects 50 Soygree Yield (bu/ac Grain Environmental Index

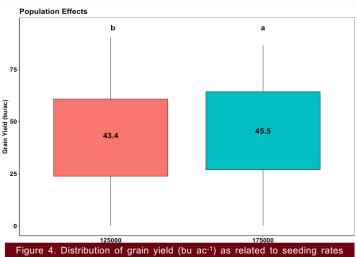
UNIVERSITY OF MINNESOTA EXTENSION

Figure 2. Soybean grain yield (bu ac^{-1}) in response to the interaction between Fe-EDDHA rates (0, 2, and 4 lbs. Soygreen® AST acre⁻¹) and IDC severity measured by EI.


Variety x Iron Chelate Rate Effects


Materials and Methods

overall economic return.


- 1. Field Sites: 10 unique IDC environments
- Paired on-farm experiments in Western MN Danvers and Foxhome (2021/2022)
 - Graceville (2021)
- Plots were planted in two areas within each producer field: "hotspot" and "non-hotspot"
- 2. Treatments: 24 Treatments
- Iron chelate rates (Soygreen® AST): 0, 2 and 4 lbs./ac
- · Varieties: Moderately Tolerant (AG12XF1) vs Highly Tolerant (AG13XF0)
- · Seeding densities: 125,000 and 175,000 seeds/ac
- Nitrogen: 69 lbs. N/ac (urea) vs No Nitrogen

Results

(125,000 and 175,000 seeds ac-1)

A special thanks to the Minnesota Soybean Research and Promotion Council for funding this project.