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Historically, the Nebraska soybean breeding program has made tremendous progress 

improving yield in soybean based on phenotypic evaluation and selection; that is, yield 

testing over multiple locations and years to identify high-yielding lines that are consistent 

over environments. We use pedigree information to maximize and maintain genetic diversity 

in the crosses and lines that are developed, but have not used DNA genotype information. 

Now, that DNA-level information is available at affordable cost and may enhance our ability 

to identify superior lines for advancement and crossing. There are different DNA genotyping 

platforms available, including fixed-array chips or various whole-genome sequencing 

methods. Based on cost per sample and the amount of information gained, we decided to use 

the genotyping-by-sequencing approach for our genomic selection study.  

 

The objectives of this project were:  

Put into practice genomic prediction and selection in the UNL Soybean Breeding Program. 

It will be thoroughly compared to phenotypic selection to assess its true potential for 

increasing rate of genetic gain for grain yield. 

 

Sub-aims include  

1) Develop in-house genotyping methods to reduce costs and improve turn-around time, and  

2) Develop and test models for enhancing prediction accuracy through modeling the 

interaction between environment and cultivar. 

 

The use of genotyping-by-sequencing (GBS) for genomic selection holds good potential for 

improving soybean grain yield.  For this project, we looked at three main comparisons:  

 (1) Understand the size and composition of the "training population" that is 

optimal for successful genomic selection in the soybean breeding program. That is, we 

first need to calibrate our genotype and phenotype information. So we have a group of high-

yield lines that were tested in multiple environments and years to obtain good yield, maturity, 

and other performance information. We then obtained the DNA genotype information on 

those lines and through statistical analyses obtained information on the relationship between 

the genotype information for each line and its average yield performance. With that 

information relating overall genotype information to average yield performance, we could 

then apply just the genotype information to subsequent lines to predict their yield 

performance, based just on the degree to which their genotype information relates to that of 

the high-yield lines in our calibration set.  

 (2) Compare phenotype selections, genotype selections, and a set of randomly 

selected lines in two validation populations to evaluate genomic selection relative to our 

normal process of phenotypic selection, and compare both to a random control set. 

Three hundred and one soybean experimental lines in advanced stages of the University of 

DocuSign Envelope ID: BDB0A48C-9F54-4158-BD8C-0D410EEAA9C2

2/22/2018



Nebraska-Lincoln Soybean Breeding Program were used as a training population to predict 

genetic values for yield, maturity date, and plant height on two soybean test populations 

comprised of 373 breeding lines (UX2862) and 415 breeding lines (UX2872), respectively 

(Fig. 1). The test populations and training population were both genotyped with GBS. 

Filtering and alignment of the same GBS SNPs (single-nucleotide polymorphisms) between 

training and test populations was done sequentially. The SNPs with 80 percent missing values 

(PMV) and with minor-allele frequency (MAF) > 0.05 were used, giving a total of 3,669 

SNPs for UX2862 and 3,107 SNPs for UX2872. After filtering, remaining missing values 

were imputed using naive imputation method. This method is not expected to add 

information, but rather serves the purpose of ensuring unchanged allele frequencies after 

imputation and provides a marker matrix containing no missing data so that analytical 

operations can be performed. The prediction equation (RR-BLUP model) was then used to 

evaluate individuals in the test population, which has both genotype (DNA SNP) and 

phenotype (multi-location yield test) information. The best breeding lines were then selected 

based on their (1) phenotype – that is, average yield over seven environments during 2014, 

and (2) genotype – that is their marker-predicted genotypic values for yield, maturity date 

and plant height. The top ten predicted highest yielding breeding lines for UX2862 are shown 

in Table 1.  
 

 

Fig.1 A general scheme on evaluating the potential of genomic selection to enhance the speed and 

accuracy of soybean breeding programs at the University of Nebraska-Lincoln. Training, 

validation, and test populations for genomic selction are presented.  

Table 1. The top ten highest yielding breeding lines of UX2862 test population based on genomic-

estimated breeding values. This population was genotyped by GBS.  

Population A

373 Breeding Lines

• Phenotype data (protein, oil, yield, maturity, height lodging)

• Genotype data (genotyping-by-sequencing)

Training Population

~ 301 Breeding Lines

2011 Preliminary Test Data

2012 N test Data

Validation Population

613 Breeding Lines

2012 Preliminary Test Data

2013 N test Data

New Training Population

~ 900 Breeding Lines

Predict

Objectives:

 Determine prediction accuracy

 Effects of training population design on 

prediction accuracy (e.g., relatedness of TP)

 Predict variance of families

Genomic selection set

George’s set

Random set

Genomic selection set

George’s set

Random set

Population B

415 Breeding Lines
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A validation set comprised of 613 breeding lines (i.e., an independent set of entries used to 

test the accuracy of predictions) was also constructed  using progenies derived from crosses 

between selected lines included in the training population. The validation set was genotyped 

with the GBS and phenotyped in at least eight environments (four locations, two years) with 

two replications per environment. This dataset forms the best available validation set in the 

genomic selection community for giving more power to make inferences. With the complete 

GBS data, the genetic value of lines contained in the validation set will be predicted using 

standard genomic selection models. The accuracy of the predictions will be evaluated by 

correlating them with the observed phenotypes. Due to some delays in final genotype data, 

this analysis is currently underway.  

Finally, we will combine all of the genotpe information obtained to date in the original 

training set plus the validation set to make a new training set with genotype and phenotype 

information on nearly 1,000 soybean lines tested over environments and years from multiple 

different crosses. That new training set with recalibrated genotype to phenotype information, 

will be used to predict yields of our current newly developed breeding lines based on 

genotype.  

 (3) The longer-term comparison and evaluation of the value of implementing 

genomic selection in the breeding program is ongoing. It involves comparison of 

progenies from crosses made among parent lines that were selected based on either 

genotype or phenotype. We made selections based on seven environments of evaluation in 

Nebraska, Iowa, and Illinois during 2014 to identify the 20 highest-yielding lines that were 

used for crossing in our Puerto Rico nursery during the 2014-2015 winter season. These 

crosses comprise the “Genomic Selection Phenotype Crosses,” and progeny lines from the 

75 populations that were developed have been advanced through our breeding program 

thorugh progeny rows and multi-location preliminary yield tests in Nebraska during 2016 

and 2017. The comparison set of parental selections based on genotype information was 

delayed due to delays in receiving the genotype informaiton from the external lab that was 

being used. Consequently, the “Genomic Selection Genotype Crosses” were made during the 

2015-2016 winter seasson in Puerto Rico, one year behind the phenotype crosses. Progeny 

lines from the 75 populations that were developed from the genotype-selected parents have 

been advanced through populations and progeny rows in our breeding program during 2016 

Genotype ID Yield Height Maturity

UX2862-229 4596.18 106.11 32.02

UX2862-363 4590.54 102.24 27.01

UX2862-096 4566.37 108.19 32.67

UX2862-409 4534.33 96.66 25.14

UX2862-115 4532.71 109.25 32.31

UX2862-348 4523.03 99.42 29.40

UX2862-014 4518.79 106.29 30.53

UX2862-435 4511.68 95.92 26.25

UX2862-401 4506.98 94.62 24.51
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and 2017. They will be in their first multi-location yield tests in Nebraska during the 2018 

season. The outome of lines from the genomic selection crosses vs. the phenotype selection 

crosses will be followed through the program during the next 3 years to document 

performance of genomic selection vs. phenotypic selection in the soybean breeding program.   

Summary findings, coments, and plans going forward 

Some key findings from our work indicate that we have an efficient breeding program that 

provides high-quality phenotype data from our high-yield Nebraska locations, and that 

inclusion of genotype information may help improve selection of superior lines for crossing 

and production. It is important to have high-quality phenotype information to calibrate the 

genotype-phenotype relationship in the training population and be able to make more 

accurate predictions. Genotype representation in the training set and target populations also 

is important, so there is a question on the size of the training set that is needed to adequately 

represent the genotypes that will be encountered in the target populations. A brief summary 

of main findings is listed here:  

 We don’t need more than ~150 lines in the training set to effectively predict 

performance in the target population. 

 More closely related training and target populations result in improved prediction 

accuracy. 

 Cost of genotyping per sample still is above where we can realistically process 10,000 

samples in our program, but we are making progress on decreasing costs per sample 

and improving throughput and quality of genotype information with development of 

the in-house genotyping methods. 

 Prediction accuracy is relatively high (~0.60), indicating that we could potentially 

improve overall efficiency by adding genotype information to the phenotype 

information from our line evaluations.  

 Genotype information may improve our breeding progress by allowing testing of 

more lines in preliminary tests through sparse testing and prediction of missing lines. 

I will outline this more in a later update on the breeding program as we go forward. 

But briefly, say we normally advance 10,000 plants from F4 populations to progeny 

rows. Then I select (visually) about 1,500 or at most 2,000 of those progeny rows to 

advance to our multi-location yield tests in Nebraska. All lines are tested at four 

locations, for a total of 8,000 yield plots at that stage. Compare that to selection of 

lines with genotype information. Suppose we can genotype all 10,000 plants before 

sending them to progeny rows. So, with 60% prediction accuracy, say we retain 40% 

of the plants and send the top-ranked 40% (based on their genomic predictions for 

yield) to progeny rows in Chile. That is 4,000 rows instead of 10,000. Then I harvest 

all 4,000 and test them in multi-location tests in Nebraska. Except that now we have 

genotype information on all those individuals. So for the yield testing, we could 

potentially test only a portion of the 4,000 lines, with an experimental design that 

tests all of the lines at one or more locations. With the genotype information, we can 

then predict the performance of the lines that are missing at individual locations, 

using their performance at the other locations plus the genotype information from all 

the other lines. So, assuming that we could have up to 50% missing lines, then for the 

same 2,000 yield test plots at a location, we could effectively evaluate 4,000 lines 
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instead of 2,000. This is one part of the overall implementation of genomic selection 

in the breeding program that we will evaluate going forward.  

 We will continue with the comparison of lines derived from crosses based on 

genotype selection vs. crosses based on phenotype selection, and make appropriate 

modifications to the overall breeding program based on the findings of that 

comparison.  

 By the end of 2018, the new marker system should be more cost-effective and 

throughput more efficient, so we will be able to accommodate the numbers needed 

for closer to full implementation in the breeding program going forward.  

 We are working on finalizing the manuscript for the studies outlined in Figure 1, and 

the paper should be submitted for journal review before the end of April 2018.  

Thank you for your support of this project. We will be able to provide valuable information 

on implementation of genomic selection in soybean breeding to the research community, and 

to move ahead with implementation of key findings in our own breeding program to enhance 

our breeding progress for yield and quality. Ultimately, this will enhance progress and 

provide soybeans with superior yield and quality to soybean producers.  
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