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This SOYGEN (Science Optimized Yield Gains across Environments) project leverages and builds upon 
ongoing and previously funded work to increase soybean genetic gain for yield and seed composition by 
developing tools, know-how and community among public breeders in the north central US. Specifically, 
we have created and tested (or are testing) breeding resources and methods that can be applied to our 
own breeding programs, or more broadly to soybean breeding programs in general. 

 

Objective 1: Elevating collaborative field trials 

 

mailto:mchale.21@osu.edu
mailto:bdiers@illinois.edu
mailto:ggraef1@unl.edu
mailto:mhudson@illinois.edu
mailto:david.hyten@unl.edu
mailto:carrie.miranda@ndsu.edu
mailto:lore0149@umn.edu
mailto:krainey@purdue.edu
mailto:nfmartin@illinois.edu
mailto:ScabooA@missouri.edu
mailto:wts@ksu.edu
mailto:singhak@iastate.edu
mailto:wangdech@msu.edu
mailto:rex.nelson@usda.gov


Key performance indicators 

(1) Standardized data input methods will be developed and will include data quality control methods. 

Forms provided to Northern Uniform Regional Trial collaborators were updated to include GPS 
coordinates. These are now consistently reported for all trial locations. Additionally, data from forms are 
uploaded to a database. Future plans entail direct uploading by collaborators of data to a SoybeanBase 
database, however this is still in progress.   

https://soybase.org/ncsrp/queryportal/ 

(2) Existing data from collaborative trials will be quality checked. 

Uploading data (past and present) to a database requires quality checking, which has been done 
https://soybase.org/ncsrp/queryportal/ 

(3) Collection of genotypic data from the Soy6KSNP chip for UT and SCN regional trial entries. 

We have genotyped a total of 3813 UT and SCN UT lines since 2019. We now have a database of 2510 
NUST lines genotyped with the 6K SNP chip uploaded to soybeanbase.breedinginsight.net. In 2020 we 
switched to genotyping via low pass sequencing and imputation provided by Gencove. Imputation 
accuracy was determined to be extremely high, >99%. This provided us with many many more SNPs (~3 
million versus 6000), allowing much more powerful analyses to be performed on this germplasm in 
future years.  

(4) Weather data will be collected for the majority of the future NUST field environments. 

Regular reporting of GPS coordinates of field trials allows us to connect to weather databases. We can 
do this through Soybeanbase and have loaded templates for the 2022 trials into Soybeanbase. Weather 
data from GPS coordinates was used to determine the independence of trial sites.  

(5) The data from the NUST will be analyzed to determine the usefulness of test locations in predicting 
the performance of the experimental lines.   

We leveraged the newly acquired genotype data and combined with our new database holding the UT 
phenotypic data to test how well genomic prediction might work with the UT trials. We used a leave-
one-trial out cross-validation scheme, which basically means we dropped all data from one complete 
trial out of the dataset, and used the remaining data to develop a genomic prediction model. We then 
used this genomic prediction trial to predict the trial left out, and correlated observed yield performance 
with predicted yield performance. We only designated those trials containing more than 20 genotyped 
lines as validation trials for better estimates of correlations coefficients.  This left 17 validation trials. 
Prediction accuracies were all quite good, ranging from 0.46 to 0.95 (see table below). This indicates 
that the genotype-phenotype data resource we began building as part of this project has value in terms 
of assisting future efforts towards genomics-assisted breeding. 

 

Table 1. The NUST historical data was used as a training population to predict the performance of 
experimental strains for seed yield in specific large tests with at least 20 genotyped experimental strains 
from 2018 to 2020. Estimates of prediction accuracy (𝑟𝑟𝑀𝑀𝑀𝑀) values were obtained by dividing the 
predictive ability (𝑟𝑟𝑀𝑀𝑀𝑀) by the square root of the phenotypic reliability (i). A 95% confidence interval (in 
parentheses) for the predictive ability (𝑟𝑟𝑀𝑀𝑀𝑀) was estimated from 10,000 bootstrapping samples. 



Test 𝑟𝑟𝑀𝑀𝑀𝑀( 𝑦𝑦� ,𝑦𝑦) 𝑟𝑟𝑀𝑀𝑀𝑀( 𝑦𝑦� , 𝑦𝑦) N* 

PTIV2019 0.64 (0.33, 0.95) 0.95 24 

UTIV2020 0.71 (0.45, 0.96) 0.89 20 

PTII2020 0.61 (0.47, 0.75) 0.85 67 

PTIII2018 0.76 (0.60, 0.92) 0.84 24 

UTIII2018 0.79 (0.60, 0.98) 0.83 29 

UTIII2020 0.63 (0.36, 0.90) 0.77 39 

PTII2018 0.63 (0.43, 0.84) 0.75 24 

PTIV2020 0.54 (0.24, 0.84) 0.74 26 

UTII2020 0.41 (0.12, 0.69) 0.72 39 

PTIII2020 0.49 (0.30, 0.68) 0.70 63 

PTI2019 0.58 (0.38, 0.78) 0.63 34 

PTIII2019 0.44 (0.24, 0.64) 0.62 55 

UTIII2019 0.5 (0.09, 0.90) 0.60 27 

UTII2018 0.49 (0.15, 0.84) 0.59 26 

PTI2020 0.47 (0.27, 0.68) 0.59 30 

PTII2019 0.42 (0.17, 0.67) 0.51 60 

UTII2019 0.41 (0.13, 0.69) 0.46 35 

* Number of genotyped experimental strains available in each test. 

 

 

 

Deliverables 

(1) Database framework for agronomic, environmental, genotypic, meta and other trait data for 
collaborative trials and (2) Database populated with historical and current data from collaborative trials, 
including agronomic, environmental, genotypic, meta and other trait data 

Soybeanbase (https://soybeanbase.breedinginsight.net/) and a SQL database hosted at Soybase 
(https://soybase.org/ncsrp/queryportal/) have been created and are available for researchers to deposit 
their data. The long-term plan is to host both genotype and phenotype data at Soybeanbase, which is 
part of SOYGEN3 objectives. Currently, Soybeanbase hosts genotype data on 2510 UT and SCN UT 
breeding lines. We are still determining how to host data for the 1303 lines genotyped with low-pass 
sequencing. Soybeanbase also holds data for SoyNAM and internal breeding lines, amounting to 
genotype data being stored for over 10,000 genotypes. The Soybase SQL database holds phenotypic 

https://soybeanbase.breedinginsight.net/
https://soybase.org/ncsrp/queryportal/


data on more than 8000 advanced breeding lines dating back to 1993. The phenotypic data represents 
over 1650 unique environments, from years ranging from 1993 to 2021. Data from 2022 is currently 
being imported. The total dataset consists of over 128,000 yield datapoints, as well as data on 18 other 
traits including maturity date, seed composition, and disease resistance.  

(2) Data from the uniform tests will become more useful as it will be connected to environmental and 
genotypic data.  

We performed several analyses on the genotype and phenotype data that make up this dataset, and we 
have prepared a manuscript that is very close for submission to a peer-reviewed scientific journal. In this 
manuscript, we have made the UT genotype and phenotype data public, characterized the data available 
to researchers all over the world, determined the genetic relationships among all lines submitted to the 
UT, made genotype-phenotype associations, and tested genomic prediction models. Some interesting 
findings included the lack of strong population differentiation among breeding programs. This finding 
highlights the role of the cooperative Uniform Trials in facilitation of germplasm sharing among breeding 
programs, which helps all programs achieve greater sustained genetic gain. Secondly, we found the 
biggest driver of population differentiation among maturity groups was the E2 locus, with a few other 
loci showing effects. We also identified some genomic regions lacking genetic diversity in one maturity 
group, but for which there was genetic variation in other maturity groups. This could help future 
breeding efforts identify such regions for targeted incorporation of diversity into key genomic regions 
lacking diversity, perhaps caused by genetic drift. We performed genome-wide association mapping, and 
found a total of 30 marker-trait associations representing 30 independent QTL. These results helps 
researchers determine which loci are driving phenotypic variation in the UT germplasm, and tells us that 
this dataset contains good genetic signal for performing future analyses perhaps on specific questions. 
Finally, as mentioned above, we were able to train accurate genomic prediction models using these 
data. 

(3) Breeders will better understand how to weigh data from different environments of the NUST  
understand where new cultivars be more likely to be adapted and tested successfully. 

Ranking of entries is dependent on Uniform trial locations, and though site redundancy (in terms of 
cultivar ranking was correlated to physical distance between trial site locations, it had a slightly higher 
correlation to environmental variables. The most influential trial sites (those which other sites clustered 
around in terms of cultivar ranking) were Ames Iowa, Urbana Illinois, Manhattan Kansas, West Lafayette 
Indiana. The most influential variables grouping sites together were coldest quarter precipitation, driest 
month/quarter precipitation, annual mean temperature, and annual precipitation. 

 

Objective 2: Development of a genomic breeding facilitation suite 

 

Key performance indicators 

(1) Genotyping of 10,000 breeding lines using targeted GBS approach on 1k SNPs during first year of 
project. 

Participating breeding programs each genotyped ~2500 lines as part of the selection experiment, and 
are continuing to genotype new and advanced breeding lines to develop breeding program specific 
training sets and use these training sets.  



Development of the 1K marker set has been published: Wang, H., B. Campbell, M. Happ, S. 
McConaughy, A. Lorenz, K. Amundsen, Q. Song, V. Pantalone, D. Hyten. 2022. Development of molecular 
inversion probes for soybean progeny genomic selection genotyping. Plant Genome 
doi.org/10.1002/tpg2.20270. 

(2) Annual workshop or webinar given on application of genomic selection to soybean breeding. 

An in-person workshop was held at the SBW in 2020, a second training was done specifically for the 
SOYGEN team via Zoom in 2021, more recently the Breeding Insight team has made themselves 
available for training of the soybean community in database management through our implementation 
BreedBase. 

(3) Genomic data management system and allied analysis tools for adoption by soybean breeding 
community identified. 

Excitingly, we have identified and adopted the breeding database and genomic data management 
system, BreedBase. The soybean implementation of this is called Soybeanbase 
(https://soybeanbase.breedinginsight.net/). This has been adopted and implemented through the help 
of Rex Nelson and the Breeding Insight team.  

We have also created a streamlined analysis pipeline that can be run as an R shiny app, greatly 
increasing the ease with which these data can be analyzed. The app takes data in a standardized format 
exported from Soybeanbase and executes many of the major steps in a genomic prediction pipeline, 
including marker data filtering, imputation, training population optimization, model selection, cross 
validation, and prediction of genetic values for defined target population.  

https://github.com/UMN-Lorenz-Group/SoyGen2App 

To run app, click on “launch binder” icon under SoyGen2App heading  Go to App folder under files  
open app.R  Run all code to launch application. 

 

Deliverables 

(1) Streamlined public genotyping service for the public soybean breeding sector at a low enough cost to 
afford genomic selection on a wide scale. 

Previously we had developed a set of markers, genotyping methods, and DNA isolation methods to cost 
effectively provide a genotyping service to the SOYGEN breeders (David Hyten, UNL). Yet, recognizing 
the throughput limitations of an academic lab with an active research program, we have more recently 
been working with Agriplex. 

(https://www.agriplexgenomics.com/1k-
soy?utm_medium=email&_hsmi=244361042&_hsenc=p2ANqtz-8claIasz9m8NLRed190_rTJ1F-
kI3CIngv8nPCRRzbDvDj8dMc5CXAces3K1CjF9vnooKH8gjrpzQ2cCAiAKRgM0dafQ&utm_content=244361
042&utm_source=hs_email) 

The Soybean Community panel, which consists of 1326 SNPs, was developed in collaboration with 
members of the SOYGEN team and AgriPlex. Using their AgriPlex Connect program, public soybean 
breeders and geneticists can take advantage of discounted pricing and expedited turn-around times 
during critical times of the year for selection.  

https://soybeanbase.breedinginsight.net/
https://github.com/UMN-Lorenz-Group/SoyGen2App
https://www.agriplexgenomics.com/1k-soy?utm_medium=email&_hsmi=244361042&_hsenc=p2ANqtz-8claIasz9m8NLRed190_rTJ1F-kI3CIngv8nPCRRzbDvDj8dMc5CXAces3K1CjF9vnooKH8gjrpzQ2cCAiAKRgM0dafQ&utm_content=244361042&utm_source=hs_email
https://www.agriplexgenomics.com/1k-soy?utm_medium=email&_hsmi=244361042&_hsenc=p2ANqtz-8claIasz9m8NLRed190_rTJ1F-kI3CIngv8nPCRRzbDvDj8dMc5CXAces3K1CjF9vnooKH8gjrpzQ2cCAiAKRgM0dafQ&utm_content=244361042&utm_source=hs_email
https://www.agriplexgenomics.com/1k-soy?utm_medium=email&_hsmi=244361042&_hsenc=p2ANqtz-8claIasz9m8NLRed190_rTJ1F-kI3CIngv8nPCRRzbDvDj8dMc5CXAces3K1CjF9vnooKH8gjrpzQ2cCAiAKRgM0dafQ&utm_content=244361042&utm_source=hs_email
https://www.agriplexgenomics.com/1k-soy?utm_medium=email&_hsmi=244361042&_hsenc=p2ANqtz-8claIasz9m8NLRed190_rTJ1F-kI3CIngv8nPCRRzbDvDj8dMc5CXAces3K1CjF9vnooKH8gjrpzQ2cCAiAKRgM0dafQ&utm_content=244361042&utm_source=hs_email


(2) Workshops on genomic selection delivered to public soybean breeding community. 

As above, an in-person workshop was held at the SBW in 2020, a second training was done specifically 
for the SOYGEN team via Zoom in 2021, more recently the Breeding Insight team has made themselves 
available for training of the soybean community in database management through our implementation 
BreedBase. 

 

Objective 3: Evaluation of soybean breeding methods that increase gain 

 

Key performance indicators  

(1) Genotyping of 2500 F4 lines in two years for each participating breeding program. 

This was completed for four participating breeding programs using either the 1K set of SNPS from UNL 
or the 1.3K set of SNPs from AgriPlex. 

(2) Application of 4 different selection schemes. 

Thus far, only a single year of validation has been summarized, thus no significant results have been 
reported. Yet, in an application of random selection, genomic selection, and a combination of genomic 
selection plus selection on canopy coverage from University of Minnesota, genomic selection did 
increase our chances of selecting superior lines, however we did not achieve statistical significance in 
most cases. A second year of validation data has been collected in 2022. The student managing this 
project has since graduated, and the data is being analyzed right now by a student at the University of 
Missouri. In the first year, we did see genomic prediction work quite well, especially in the southern 
region of Minnesota. This could be due to the fact that the MG I germplasm is better connected to the 
UT training set used, and these populations were larger than the ones tested in central and northern 
Minnesota. In the table below, the top ten lines by validation yield data were defined for each location. 
The tabled valued indicate whether genomic prediction (GP) canopy coverage selection combined with 
genomic prediction (CC+GP) or random selection selected that line (Table 2). It can be seen that, 
especially in the south on average and the two individual south locations (Lamberton and Waseca) that 
the best 10 lines were much more likely to have been chosen by either GP or CC+GP than random 
selection. 

Table 2. Performance of genomic prediction (GP) canopy coverage selection combined with genomic 
prediction (CC+GP) or random selection selected that line from UMN in test locations going from North 
to South. 



 

Similarly, data from University of Missouri showed no significant difference among selection methods 
based only on a single year of data; yet, random selections had lower yield estimates (Figure 1 and 2). 

 

Figure 1. Mean separation of yield for progeny within groups selected by four different methodologies including 
6% selection intensity based on GEBV (GS), 12% selection intensity on GEBV + 50% selection intensity based on 
canopy coverage (CCGS), 6% selection intensity on yield (Yield), and 6% random sampling (Random) from the 
University of Missouri breeding program grown at one location in Missouri during 2022. 

 



 

Figure 2. Mean separation of yield for progeny within groups selected by four different methodologies including 
6% selection intensity based on GEBV (GS), 12% selection intensity on GEBV + 50% selection intensity based on 
canopy coverage (CCGS), 6% selection intensity on yield (Yield), and 6% random sampling (Random) from the 
University of Illinois breeding program grown at one location in Illinois during 2022 

(3) Generate crosses for 5 cross combinations based on breeder selections and 5 cross combinations 
based on genomic mating selections for protein and yield (Task 4). 

Each year, UMN predicted the mean, population variance, and genetic correlations among traits for all 
possible crosses among UT breeding lines and provided these predictions to breeders. A total of eight 
participating breeding programs used this information to select crosses. UMN also selected 5 cross 
combinations that strived to create breeding populations with high protein, high yield and a reduced 
genetic correlation between these traits. These crosses were made in 2020, and populations were 
advanced to the progeny row stages in 2023. This fall we will be able to measure protein on these 
populations. 

Additionally, we also leveraged the existing SoyNAM dataset to validate these models for predicting 
genetic variances and genetic correlations among traits. Using these 39 biparental populations, models 
to predict genetic variances and genetic correlations between traits for all possible crosses, we validated 
models by correlating observed parameter values with predicted parameter values. We found that in 17 
out of 21 cases, there was a positive correlation between predicted genetic correlations and observed 
genetic correlations, indicating this methodology holds promise for identifying breeding crosses that 
could have less detrimental correlations between traits. This manuscript is written and will be submitted 
in the coming months. 

 



 

Figure 3. Correlations between predicted genetic correlations and observed genetic correlations in 
SoyNAM populations. 

(4) Advance generation by single seed descent for generated crosses in (5) and perform preliminary yield 
trials with protein data collected by NIRS on F3 or F4 derived lines in FY23. 



These are in progress and will be tested and compared by multiple breeding programs in-field in 2023, 
with yield data available in 2024. 

(6) Perform crosses, genotyping, and line advancement according to rapid cycling breeding scheme. 

During the summer of 2020, a Cycle 0 (base population) population of F1 plants was created by random 
mating 13 parents. The parents were selected for yield potential, genetic diversity and seed 
composition. Genomic predictions for seed yield, genetic variation, and seed composition were used to 
select superior F1 plants, and intermate the selected plants to produce a new cycle of F1 plants. This 
rapid cycling process of selection and intermating was repeated three times to produce Cycle 1, Cycle 2 
and Cycle 3 generations. No phenotypic data was collected on these progeny during this process. 
Creating of Cycle 0 through Cycle 3 was completed in less than two years by growing two generations in 
the greenhouse in the winter, and two in the field in the summer. Each generation between 100 and 250 
new F1 progeny were created and between 20 to 30% of the F1s were selected for intermating. In each 
cycle, the F1 plants were allowed to self over multiple generations, and inbred populations of random F3 
or F4-derived lines were created from each cycle of selection. The inbreeding and seed increase process 
to complete lines for evaluation was completed in the winter of 2022. In the summer of 2022, 150 to 
160 random F3 or F4-derived lines from Cycle 0 through Cycle 3 were evaluated in the field at three 
locations in KS. In additional to obtaining information on seed yield, maturity, and seed composition 
(seed protein and oil), each of the 633 genotypes in the trial were genotyped using the Agriplex 1000K 
SNP array and monitored using remote sensing from about the V2 growth stage until maturity. In 2023, 
these field evaluations are being repeated.  

(7) Generate near isogenic lines varying for putative “yield alleles” previously identified from landscape 
genomics analyses. 

Our previous NCSRP project identified 26 putative yield-related alleles based on a population genetic 
evaluation of haplotypes under selection in an alternative (from Randy Nelson’s breeding program) and 
a conventional gene pool. To test the value of these alleles, the OSU breeding program focused on four 
loci which differ between the breeding line LG09-8165 and LG11-5120. Material transfer agreements 
were obtained for these lines with complex pedigrees. In FY20, crosses were made. Since then, 
reselections from heterozygous individuals were carried out to develop F4 derived families which 
primarily differ only for the yield allele of the targeted loci. Currently, these F4 derived lines are being 
grown in progeny rows and will be available for preliminary yield tests by collaborators in FY24. 

 

Deliverables 

(1) Methods to improve selection of progeny rows based on genomic selection with secondary traits 
and/or improved spatial statistics. 
 
Although the multi-year data necessary to obtain a definite conclusion on best methods has not yeat 
been obtained, the participating breeding programs have implemented the procedures and methods 
necessary to apply these methods and have shared this knowledge with the SOYGEN group. The 
feasibility of genotyping and making selections on large numbers of early generation materials during 
the field season can be logistically difficult, requiring the implementation of new field protocols; which 
have been and will continue to be shared among breeding programs. 

(2) Application and limitations established for rapid cycling genomic selection in soybean. 



The KSU and UMN worked together to implement and establish methods for a rapid cycling genomic 
selection program. Results of these upcoming field trials will be used to characterize the effectiveness of 
rapid cycling to increase genetic gain, and understand the impact of rapid cycling on the phenotype of 
the progeny and genetic makeup of each cycle of selection. Ultimately, providing data to support a 
specific number of rounds of rapid cycling based off a given model, for a given population diversity. 

 

Objective 4: Characterization and use of the USDA Soybean Germplasm Collection, a foundation for 
future success 

 

Key performance indicators 

(1) Soybean breeding programs choose soybean accessions for use in their breeding programs based on 
results of this work. 

Data summaries from the tests were shared with cooperators. Breeding programs have used accessions 
from this study as parents in their breeding programs. For example, the McHale breeding program has 
sub-selected lines predicted to have good agronomic traits and yield from a selection of exotic 
germplasm screened for disease resistance traits. 

 


