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Introduction 
Plant phenotyping is the characterization of and quantification of physical traits of plants. 
Researchers used simple devices to measure traits for a few plots in traditional phenotyping. 
While these methods are simple and easy to perform for a small number of plots, they are not 
efficient for large-scale phenotype plots in terms of labor efforts, cost, and time.  
On the other side, extraordinary advances over the 10-15 years in precision agriculture in crop 
monitoring and management have geared towards automated crop monitoring. In the realm 
of crop breeding plots, this approach is commonly referred to as "High Throughput 
Phenotyping"; it utilizes sensor systems & computational tools to extract phenotypic data for 
large populations. One of the most renowned, widely used, and effective tools and platforms 
is remote sensing, which has streamlined the rapid acquisition of imagery data. Unmanned 
Aircraft Systems (UAS) equipped with frame cameras make it possible to acquire images of 
large fields of thousands of small phenotype plots. 
 However, the major limitation of the widespread adoption of this technology in agriculture is 
the complex data processing systems and data analysis to estimate numerical targets. Here, 
the major disadvantage is locating plots precisely in high-resolution imagery of the field and 
delineating plot boundaries within the Ortho mosaic images of field experiments. When 
dealing with fewer than 50 plots, the manual creation of plot boundaries and integration with 
phenotype data for analysis requires minimal effort. However, as the number of plots 
increases into the thousands, this task becomes significantly more laborious.  
Therefore, the aim of the study was to create multiple polygon shape files with unique 
identifiers that can be overlaid on drone imagery data with cm-level accuracy. The core idea 
was developing a pipeline without assumptions of field uniformity, plot spacing, size, or 
number of plots, and eliminating the need for manual adjustments and orientation of 
individual plots. To utilize precision agriculture techniques with high-accuracy plot position 
data from a precision planter and georeferenced UAV (Unmanned Aerial Vehicles) image data 
to generate plot boundaries. And to create an automated program capable of producing 
maps, multi-polygon shapefiles, and CSV files of plot boundaries for use in external software 
and downstream analysis. The proposed objective also included the idea of drawing plot 
boundaries that are derived without relying on image features and can be drawn regardless 
of vegetation presence. The goal was to design an open-source, efficient, adaptable, and 
replicable automated pipeline that minimizes time, labor, and user involvement while 
facilitating the extraction of zonal statistics for individual plots.  
Material and methods 
The methodology section outlines the systematic approach undertaken to conduct this 
research, elucidating the techniques and procedures in different steps. Each step 
contributed to a different outcome.  
 
Datasets  
The sample dataset consisted of non-nodulating soybean breeding plots planted for some 
experiments. This dataset served as the foundation for initializing a pipeline designed to 
create boundaries around various phenotype plots. The plot was planted in 2022 using 4 rows 
(12’ planted and 4’ foot alley) with 30 inches (0.762 meters) spacing between each row. The 
SRES  4-row planter was used to sow a specified and recommended number of seeds in each 



   

 

   

 

phenotype plot. The spatial position of each plot was recorded using GPS (Global Positioning 
System) receiver and a data logger that was mounted on the planter exactly at the center of 
the 4-row planter (width 90”).  
 For each recorded position, the Trimble system logs information such as spatial coordinates 
(latitude and longitude), HDOP, VDOP, GPS Status, date, time, speed, and a unique event ID. 
The Trimble system records the spatial positions of the planter at three specific points within 
each plot: one at the beginning, one near the middle, and one at the end of the plot. These 
positions are determined based on remote output event signals that are triggered when the 
planter reaches those key locations. Since the three points within each plot have different 
event IDs, they are used to group the GPS data together, effectively associating them with 
the same plot. The collected data is exported to a CSV file, which is subsequently utilized as 
input for the planter's logged GPS data. 
The second input was raster file/UAV imagery acquired by the five-band multispectral sensing 
system flown on canopy closure at 30 meters above the ground. Individual camera captures 
were imported into Agi soft's Meta Shape photogrammetry software to generate 
orthoimages of the field. Our photogrammetry workflow was based on vendor-
recommended settings. The input image consisted of all the background metadata and pixel 
values.  
The third part comprises four coordinates defining the region of interest (ROI). These 
coordinates can be directly input into the code, or alternatively, a shapefile for the ROI can be 
generated initially. This shapefile serves the purpose of delineating the experimental area and 
removing undesired edges from the multispectral imagery obtained during the image 
stitching process. All spatial data files were in WGS 1984, it is the coordinate system used by 
the Global Positioning System (GPS) for worldwide positioning. 
The fourth file serves as the experimental area map, containing the grid layout of plots within 
the region of interest. 
The fifth file, on the other hand, is the phenotype data file, encompassing a comprehensive 
set of phenotype data, including location, entry name, treatment, stand, harvest, yield, plot 
weight, moisture, lodging, height, seed quality, seed weight, protein content, oil content, and 
more.  
Image post-processing/spectral data manipulation 
In the first step, raster imagery was imported in Python using the raster IO library, and its 
metadata was explored to retrieve information about the raster, understand the data's 
properties, and conduct geospatial analysis, or visualize the raster. Then the imagery 
coordinate system was converted from WGS 1984 (decimal degrees) to UTM zone 14 (meters) 
for cm level and improved accuracy. UTM projections are designed for specific zones, which 
results in minimal distortion within each zone. UTM coordinates are given in meters, making 
them well-suited for distance and area calculations, this can reduce spatial computational load 
for spatial operations. The metadata of the imagery was examined once more to verify the 
consistency of all properties, excluding the coordinate system. A pixel histogram for the 
imagery was made to explore the distribution of pixel values. This pixel histogram is a 
graphical representation of pixel statistics, providing a visual impression of the data's 
distribution. It was observed that the histogram showed positive skewness, indicating that 
most pixel values across all bands were concentrated toward the right side. Also, a few 



   

 

   

 

multiple peaks were observed, indicating the presence of soil, plants, land, etc. However, 
outliers were detected, which disrupted the overall appearance of the raster image. The 
outliers were single and very sharp peaks of some bands 
Therefore, the region of interest using 4 coordinates was created to eradicate unwanted 
pixels and the unsmoothed edges of the image near the boundary. The four coordinates 
initially captured in the field were in the WGS 1984 coordinate system. Subsequently, these 
coordinates were transformed into the UTM zone system to overlay them onto the imagery 
and clipping all five bands of the Ortho mosaic. Many outliers in the image were removed, but 
still, a few outliers were left. Therefore, the next step involved was pixel thresholding. In 
previous approaches, vegetation segmentation using VI thresholds or pixel thresholds was 
employed to eliminate undesired pixels, including bare soil and shadows, to exclude 
potentially biasing factors. However, in this study, the decision was made to solely remove 
unwanted pixels by setting a predefined threshold value from the histogram. This choice was 
driven by the intention to retain the maximum amount of data within the image. 
After pixel thresholding, the image was subjected to a filtering process for unwanted noise 
removal. In the noise removal process, a Gaussian filter was used. A Gaussian filter is a type of 
linear filter used for image processing and spatial filtering. It is widely used for tasks like noise 
reduction, image smoothing, and feature detection in raster data. The Gaussian filter is a 
weighted moving-average filter that gives more importance to the central pixel and decreases 
the weights as you move away from the center. The Gaussian filter kernel is a 2D matrix that 
determines the weights to be applied to the neighboring pixels during filtering. The kernel is 
characterized by its size and standard deviation (sigma). A larger sigma value results in a 
broader smoothing effect, while a smaller sigma value provides sharper feature preservation. 
The values define the behavior to suit specific image processing goals, finding the right 
balance between noise reduction and feature preservation. 
Now, after noise removal VI index segmentation was done to remove soil, stones, water, land 
area, shadows, and undergrowth. The Vegetation Index (VI) values tend to exhibit higher 
values when compared to those of soil, stones, water, and shadows. Based on a literature 
review, it has been established that Normalized Difference Vegetation Index (NDVI) values 
can effectively be employed to differentiate vegetative foreground from the background. 
Typically, NDVI values below 0.33 are either omitted from the vegetation category or regarded 
as undesired components within the NDVI values linked to crops.  
 The segmented image was superimposed onto various bands to create masks that are 
applied across all bands. This process is undertaken to derive additional vegetation indices 
and values from the imagery. The methodology workflow with spectral manipulation is 
depicted in Figure 1. 



   

 

   

 

 
Figure 1.  Workflow for spectral manipulation 

Creation of plot and row boundaries 
First, planter logged RTK GPS data was converted from WGS 1984 to UTM zone 14, so that 
they can spatially align with cm level accuracy. Next, the planter-logged GPS coordinates was 
sliced from a CSV file based on the 4 coordinates of the region of interest of the field. The 
dataset of Planter GPS points represented the movement of planters in a field; the points may 
correspond to the paths followed by the planters as they move across the field. In some cases, 
these paths can be organized into distinct rows, where each row represents a separate 
trajectory followed by a planter as it moves through the field. 
Using HDBSCAN to cluster these GPS points can help identify and separate these various rows. 
The density-based clustering algorithm can automatically discover clusters of varying shapes 
and sizes without requiring you to specify the number of clusters in advance. This is 
particularly advantageous when dealing with datasets where the number of rows or 
trajectories is unknown beforehand or when the rows have varying densities and shapes. 
By applying HDBSCAN to the GPS points, you can effectively group together points that 
belong to the same row or trajectory. Points belonging to different rows will form separate 
clusters, which can help you distinguish and separate the various rows in the field. 
However, it is important to note that the effectiveness of HDBSCAN, or any clustering 
algorithm, depends on the characteristics of the data and the underlying patterns of 
movement in the field. While HDBSCAN can be a reasonable approach, evaluating the results, 
tuning the algorithm's parameters, and exploring other methods to ensure the accuracy of 
row separation in your GPS points dataset is essential. After separating GPS points of different 
rows, a moving window approached with a size of 3 in the dataset was used. Within each 
window of three elements, all three elements were assigned a common identifier (ID). This 
technique was employed to group individual plots with 3 GPS points in rows based on their 
relative positions in the dataset. If any individual plot had less than or greater than three GPS 
points in the plot, then a different approach was followed to give a unique ID to each plot. In 
this code, the code is iterated through different event Id through each row. "If the initial event 
for a plot was 'TRIP_REQ,' it assigned the same unique identifier to all GPS points within that 
plot until the next 'TRIP_REQ' event occurred. The same rule applied to two other event IDs 
as well." Afterwards, the GPS points with common group or unique id at the center of the 
planter width spacing, were connected to form line strings. Each GPS point corresponded to 



   

 

   

 

a specific location where the planter operated, it was collected precisely at the center of the 
planter's width spacing. The width of the planter was known and the distance between each 
row of the planter was calculated. This distance represented the spacing between adjacent 
rows of each plot as the planter moved through the field. After creating an initial centerline 
representing the path the planter took, additional lines were drawn by offsetting them based 
on the determined row spacing. These offset lines represented the path of the planter for 
each row it planted in the region of interest. With the offset lines representing the path of 
each row, buffers were created around these lines. Each buffer's width depended on the 
desired coverage area around each row, which was determined by the planting equipment or 
the characteristics of the crop being planted. 
 Finally, polygon boundaries for each row of the crop were formed. Each polygon 
represented the area covered by a single row of the planter, considering the buffer width. 
So, in the ultimate step, a buffer was created for each line string. However, the line strings 
did not have consistent lengths due to delays in collecting GPS points. The resulting line 
string lengths differed since the distance between GPS points varied between different 
plots. All buffers were resized to the same length to standardize the buffer lengths for each 
plot. In the last step zonal statistics, the table consisted of plot ID, row ID, unique ID, a 
polygon object with coordinates of the four plot corners, centroid, area, length, width, pixel 
count, and VI (Vegetation Index) values. The methodology for spatial manipulation done by 
building a Python script is depicted in Figure 2. There are some variations on the 
methodology based on different datasets that will produce consistent results.  
 
 

Result and Discussion 

The maps given below in Figure 3. illustrate the transformation process from raw imagery to 
Vegetation Index (VI) maps and then the alignment of planter GPS data on the imagery. The 
preprocessing of the Ortho mosaic was carried out in Python, primarily utilizing the Raster IO 
library and straightforward existing algorithms and logic. To clip the imagery, the coordinates 
were input in the WGS 1984 coordinate system. In the pixel thresholding step, a threshold 
value of 10,000 was applied to eliminate unwanted pixels from the imagery. This was because 
the pixel values across all bands ranged from 0 to 10,000. A Gaussian filter with a sigma value 
of 2 was employed for noise reduction. It is important to note that these threshold and filter 
values can be adjusted as needed for several types of imagery. 
  



   

 

   

 

                                      
 Figure 2.  General work flow for creation of plots 

 
Visually, it was observed that plot boundaries formed successfully aligned on vegetation. Afterward, 

the boundary files were exported to a shapefile file as well as a CSV file, which includes information 
such as plot ID, row ID, unique ID, a polygon object with coordinates of the four plot corners, 
centroid, area, length, width, pixel count, and VI (Vegetation Index) values. It was observed 
that the workflow reduced the need for many inputs to adjust plot boundaries. Overlapping 
canopies or crop lodging from adjacent plots or crop effects do not limit the effectiveness of 
the workflow. Automated workflow was obtained for both single-row and multiple-row plot 
boundaries. Unlike other studies, the pipeline avoided complex algorithms for processing 
images and managing spatial data. This also includes no assumptions about spacing between 
rows and columns of whole plots, length, number of rows or columns etc. Plot positioning 
was done with high accuracy RTK GPS precision planter. Plot boundaries can be extracted in 
any growth stage without issues of overlapping plots and insufficient ground cover. The 
pipeline obtained was an open-source, streamlined, flexible, and reproducible pipeline to 
reduce time, effort, and user intervention while obtaining zonal statistics for individual plots. 
The only limitation was high precision planter with accurate GPS devices is needed to ensure 
accurate and precise coordinates of ROI and research plots. The breeder should pay attention 
to the number of GPS points collected on each plot. It was also observed that the agronomic 
data was not recorded with spatial coordinates of that plot. Therefore, either each plot in the 
field is assigned a unique plot ID, and the corresponding agronomic data (e.g., yield, height 
etc.) is recorded along with the spatial coordinates of that plot or the plot IDs should be 
assigned based on the movement of the planter equipped with GPS. 
 
 
 



   

 

   

 

  
Figure 3. Close-up view for creating plot boundaries from Planter GPS data on segmented raster  

 
Conclusion 
The plot boundary extraction methodology presented in the study provided an accurate and 
efficient method. This research methodology used simpler existing algorithms to extract 
spatial signatures from imagery and plot boundary extraction from high accuracy precision 
planter.  
 
Future work 
It is essential to merge the map file containing information about phenotype plots with 
spectral, spatial data, and phenotype data. This integration is necessary to facilitate statistical 
inferences and informed decision-making. Researchers sometimes need to deal with multiple 
Ortho mosaics to conduct time series analyses. Due to errors in stitching and the collection of 
imagery data, as well as precision issues in planter data, there can be instances where multiple 
images do not align correctly with the vegetation boundaries. In such cases, including a 
boundary adjustment function within an interactive mapping system becomes essential. 
Additionally, there is a requirement to assess this pipeline by comparing it and identifying 
correlations with an existing methodology. In the second study, create a foundational 
statistical analysis framework for generating automated reports and visualizations and to 
seamlessly integrate it with the boundary creation pipeline. Subsequently, the goal is to 
develop a user-friendly GUI that allows users to utilize the data extraction and analytics tool, 
enabling them to generate interactive maps and automated reports with minimal human 
intervention. This tool will be effective for extracting field plot features and analysis reports, 
which can be used in high-put phenotype and further analyses in agricultural research.  

 


