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A B S T R A C T

Quantitative measurements of root traits can improve our understanding of how crops respond to soil and
weather conditions, but such data are rare. Our objective was to quantify maximum root depth and root front
velocity (RFV) for maize (Zea mays) and soybean (Glycine max) crops across a range of growing conditions in the
Midwest USA. Two sets of root measurements were taken every 10–15 days: in the crop row (in-row) and be-
tween two crop rows (center-row) across six Iowa sites having different management practices such as planting
dates and drainage systems, totaling 20 replicated experimental treatments. Temporal root data were best de-
scribed by linear segmental functions. Maize RFV was 0.62 ± 0.2 cm d−1 until the 5th leaf stage when it in-
creased to 3.12 ± 0.03 cm d−1 until maximum depth occurred at the 18th leaf stage (860 °Cd after planting).
Similar to maize, soybean RFV was 1.19 ± 0.4 cm d−1 until the 3rd node when it increased to
3.31 ± 0.5 cm d−1 until maximum root depth occurred at the 13th node (813.6 °C d after planting). The
maximum root depth was similar between crops (P > 0.05) and ranged from 120 to 157 cm across 18 ex-
perimental treatments, and 89–90 cm in two experimental treatments. Root depth did not exceed the average
water table (two weeks prior to start grain filling) and there was a significant relationship between maximum
root depth and water table depth (R2 = 0.61; P= 0.001). Current models of root dynamics rely on temperature
as the main control on root growth; our results provide strong support for this relationship (R2 > 0.76;
P < 0.001), but suggest that water table depth should also be considered, particularly in conditions such as the
Midwest USA where excess water routinely limits crop production. These results can assist crop model cali-
bration and improvements as well as agronomic assessments and plant breeding efforts in this region.

1. Introduction

Root systems affect plant growth, crop yields, and soil health, but
studies on root characteristics are sparse. For example, plant breeding
programs have focused on the selection of above ground plant traits for
yield improvement (Tollenaar et al., 2004; Tollenaar and Lee, 2006)
while giving little attention to the below-ground root morphology
(Lynch, 2007). Among many root traits, root front velocity (RFV) and
maximum depth are important because they determine the amount of
water and nitrogen available for plant growth, as well as the amount of
water and nitrogen vulnerable to leaching (Dunbabin et al., 2003).
Indeed, deep, rapid-growth root systems may reduce losses of highly
soluble nutrients such as nitrate (Lynch, 2013) because RFV closely
matches the rate of nitrate leaching (York and Lynch, 2015).

Three-way interactions among crop genotype, management and
environment determine maximum depth, RFV, and the ability of roots
to extract water and nutrients. Relevant environmental factors include
weather conditions (Watt et al., 2006), soil temperature and moisture
(Weaver, 1926; Wang and Smith, 2004), ground water table (Stanley
et al., 1980; Logsdon et al., 2009), soil-type and texture (Dwyer et al.,
1996, Ball-Coelho et al., 1998), and nutrient availability (Lynch, 2007;
Comas et al., 2013; Soylu et al., 2014). Management factors include the
amount, type, placement and timing of fertilizer inputs (Dietzel et al.,
2015; Lazicki et al., 2016), irrigation (Wang et al., 2014), tillage
(Kaspar et al., 1991; Dweyer et al., 1996), row configuration (Whish
et al., 2015) and others. Genotype factors include species identity (Borg
and Grimes 1986) as well as variability between cultivars (Kaspar et al.,
1984; Borg and Grimes, 1986; Yu et al., 2014). The mechanisms by
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which the above-mentioned factors affect root growth and final depth
are complex, but soil conditions play a major role (Rich and Watt, 2013;
Bao et al., 2014). For example, a compacted soil layer will reduce root
growth, no matter if temperature or moisture are at optimum levels for
root growth (Keating et al., 2003).

In a review study of 48 crops species, Borg and Grimes (1986) re-
ported maximum root depths of 180–300 cm for maize, 150–200 cm for
soybean, 150–300 cm for sorghum, 150–240 cm for rye, and
150–300 cm for wheat. The wide range reflects variable interactions
among genotype, management and environment. The RFV exhibits si-
milar variability: sorghum 2–4 cm d−l (Monteith, 1986; Robertson
et al., 1993; Whish et al., 2005; Manschadi et al., 2008), maize
2.7–6 cm d−l (Taylor and Klepper, 1973; Dardanelli et al., 1997; Singh
et al., 2010), soybean 3.5–4.5 cm d−l (Stone et al., 1976; Kaspar et al.,
1984), 2–7 cm d−l for wheat and barley (Cohen and Tadmor, 1969) and
chickpea 2.5–3.6 cm d−l (Kashiwagi et al., 2015). This variability in-
dicates that use of generic values (i.e., averages) for root parameters
across environments may result in misleading agronomic assessments of
plant and cropping system performance.

In the Midwest USA, recent work has shown major changes in above
ground plant growth between new and old era cultivars (Duvick and
Cassman, 1999; Ciampitti and Vyn, 2012). Our literature review for
Iowa, USA revealed that information on root parameters has not been
updated since the mid 1980s when management practices and plant
traits were different than those used presently (Mason et al., 1982;
Kaspar et al., 1984; Borg and Grimes, 1986). Iowa is a high production
region in the USA (75% of the landscape is occupied with maize and
soybean, which contribute 12–15% to national grain production; USDA-
NASS, 2015) and is also a region with water quality challenges. Shallow
water tables exist in this region (Zhang and Schilling, 2006; Schilling,
2007; Logsdon et al., 2009) and subsurface drainage systems have been
installed in many Iowa fields to increase crop yields by removing excess
water (Helmers et al., 2012). Improved knowledge about maize and
soybean RFV and maximum depth could greatly assist agronomists and
crop modelers in analyzing and designing sustainable cropping systems.
In this study, we analyzed maize and soybean RFV and maximum root
depth data from 20 field experiments covering six sites in Iowa. We
asked the following questions:

1) What is the RFV and maximum depth of maize and soybeans crops?
2) How much time does it take roots to occupy the space between rows

and reach their maximum depth?
3) To what degree can we predict root depth over time and what is the

best predictor among soil, crop and weather variables?
4) Does the water table level affect maximum root depth?

We hypothesized that RFV would be different between maize and
soybean crops given their different structures; maize has a fibrous root
system, whereas soybean has taproot system (Feldman, 1994; Lersten
and Carlson, 2004). We also hypothesized that air temperature could be
a good predictor of root growth given its use in simulation models
(Keating et al., 2003; Yang et al., 2017). Finally, we also hypothesized
that shallow water tables inhibit root growth because the lack of oxygen
reduces roots’ ability to take up water and nutrients (Dickin and Wright,
2008; Florio et al., 2014).

2. Materials and methods

2.1. Experimental sites

In 2016, field experiments with maize and soybean were established
at six Iowa sites spanning a broad range of temperature, precipitation
and soil type (Figs. 1 and 2). Basic soil information for the sites is
provided in Fig. 1. Three sites, Central-Ames, Northwest, and Southeast
had different planting dates as a sub-factor; one site, Southeast, had
different drainage systems as a sub-factor (with and without subsurface

drainage), and two sites, Central-Kelley and Northeast, had no sub-
factors (Table 1). The combination of sites, crops, and management
practices resulted in 20 experimental units (Table 1). Experimental
plots were set in a maize after soybean rotation using local management
practices and well adapted cultivars. Maize plots were fertilized before
or at planting (about 168 kg N/ha) while soybean plots did not receive
nitrogen fertilizer. Crops were growing without supplemental irriga-
tion. Each treatment was replicated three times at each site except
Southeast, which had two replications. The size of replicated plots
varied among sites; range from 360 to 3600 m2, with the largest plots
being in Northeast experimental site. Weeds, pest and diseases were
suppressed by spraying herbicides, insecticides and fungicides when
necessary.

2.2. Root measurements

The distance between crop rows was 76 cm (the conventional spa-
cing in Midwest maize and soybean plantings) in all treatments and
sites except Northeast soybean, for which row spacing was 25.4 cm
(Exp. 14; Table 1). Root depth measurements were taken in the crop
row (in-row) and in the center of two rows (center-row) approximately
every 10–15 days from planting until maximum root depth was ob-
served. In Southwest, Central-Kelley and Central-Ames measurements
were made weekly while in Southeast, Northwest and Northeast every
other week. On each sampling date, four sub-replicate measurements in
each replicate were manually sampled using conventional 1.8 × 41 cm
steel soil probes. Extensions were attached to the probe to capture roots
to 180 cm depth (Fig. S1, panel a). Root depth was recorded in the field
as the maximum visible root tip depth (Fig. S1, panel b).

When the maximum root depth was achieved per treatment a
6.20 × 120 cm hydraulic soil core probe with extensions to sample to
200 cm depth (Giddings Machine Company, Windsor CO, USA; Fig. S1,
panel c) was used to validate manual samples in 16 out of the 20
treatments. In the lab, root depth for each core was recorded as the
maximum visible root tip depth. Sampling areas were selected to avoid
weed contamination and plot edges.

2.3. Weather, crop, and soil measurements

Maximum temperature, global solar radiation, and precipitation
were recorded from network stations positioned at the border of each of
the six experimental sites (Iowa Environmental Mesonet, IEM). Long-
term (35-year) historical weather data were also available for each site.

All the experimental sites (except Northeast) were instrumented
with Decagon (Pullman, WA, USA) soil moisture, temperature, and
groundwater table sensors recording data every 30 min. Moisture and
temperature sensors were positioned at two depth (15 and 45 cm) in
each replication. Wells with groundwater table sensors were positioned
at the borders of the experiments and were not replicated per treat-
ment. Soil nitrogen measurements were taken from all replicated plots
every two weeks (0–30 cm) and monthly (30–60 cm). In each replica-
tion, 10 sub-samples were taken from in-row and center-row positions
and homogenized. Field-moist soil samples were analyzed for NO3-N
and NH4-N concentrations (Hood-Nowotny et al., 2010).

Destructive above-ground crop sampling per replication was con-
ducted approximately every two weeks. The sampling area for maize
was 1.5 m2 and for soybean 1 m2. Plants were counted and cut at the
ground level and analyzed to derive the following parameters: growth
stage, leaf area index, maize leaf number, soybean node and pod
number, biomass accumulation per plant tissue (leaf, stem, and storage
organ including husk, cobs and kernels for maize, and pod and grains
for soybeans), as well as carbon and nitrogen concentrations per plant
tissue. Crop and soil sampling took place on the same day as root
sampling. Therefore, crop and soil data were used to explore correla-
tions between root depth and crop, soil, and weather variables (see
below).
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2.4. Data analysis

To detect differences between crops, management and site treat-
ments (n = 20; Table 1) a randomized complete block analysis of

variance (ANOVA) was performed. For the four sites that had different
management practices (Table 1) a split-plot ANOVA was performed to
detect differences between crops and management factors. Crops and
management factors were the fixed effects and the site was the random

Fig. 1. Geographic distribution of the experimental sites across the state of Iowa. Blue symbols represent fields with subsurface drainage and red symbols represent fields without
subsurface drainage. Background colors indicate different soil categories. Inset table shows coordinates, soil texture, soil organic carbon (SOM in g/100 g in the top 30 cm), drainage
system, plant available water (PAW, in mm) across 150 cm soil profile, and the 2016 May to end of August precipitation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Site location, treatment, planting date, cultivar maturity and planting to flowering average temperature and precipitation sum in each corn and soybean treatment. MG: maturity group;
CV: coefficient of variation.

Location Exp. Symbol Treatment Planting Cultivar Planting to flowering

ID (Figs. 4 and 6) Date Maturity Avg. Temperature (°C) Precipitation sum (mm)

Corn experiments
Central-Ames 1 ( ) Early Planting 26-Apr 111-day 19.6 224.5
Central-Ames 2 ( ) Late Planting 16-May 111-day 22.0 237.6
Central-Kelley 3 ( ) – 18-May 111-day 22.5 239.5
Northeast 4 ( ) – 23-Apr 105-day 18.5 483.6
Northwest 5 ( ) Early Planting 7-May 105-day 19.9 259.4
Northwest 6 ( ) Late Planting 1-Jun 105-day 22.4 174.6
Southwest 7 ( ) Early Planting 26-Apr 111-day 19.4 390.6
Southwest 8 ( ) Late Planting 15-May 111-day 21.8 321.7
Southeast 9 ( ) Subsurface Drainage 13-May 111-day 21.9 192.6
Southeast 10 ( ) No subsurface drainage 13-May 111-day 21.9 192.6

Average 21.0 271.7
CV% 6.9 36.4

Soybean experiments
Central-Ames 11 ( ) Early Planting 6-May 2.7 MG 20.6 118.6
Central-Ames 12 ( ) Late Planting 3-Jun 2.7 MG 23.5 184.3
Central-Kelley 13 ( ) – 18-May 2.7 MG 22.4 100.5
Northeast 14 ( ) – 26-Apr 1.9 MG 17.4 375.9
Northwest 15 ( ) Early Planting 7-May 2.2 MG 19.5 166.4
Northwest 16 ( ) Late Planting 1-Jun 2.2 MG 22.3 109.8
Southwest 17 ( ) Early Planting 5-May 3.1 MG 20.3 231.7
Southwest 18 ( ) Late Planting 20-May 3.1 MG 22.5 194.8
Southeast 19 ( ) Subsurface Drainage 22-May 3.1 MG 23.3 90.2
Southeast 20 ( ) No subsurface drainage 22-May 3.1 MG 23.3 90.2

Average 21.6 171.5
CV% 9.7 53.8
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effect. Within each crop, we performed a second statistical analysis and
calculated the Tukey’s test to determine statistical significant difference
among mean values for all studied root attributes. The statistical ana-
lysis was implemented using SAS 9.4 statistical package (SAS institute
Inc., Cary, NC, US).

Linear and non-linear regression models were explored to fit root
depth data over time and identify correlations between root depth and
soil, crop, and weather variables (Archontoulis and Miguez, 2015).
Linear, bi-linear and tri-linear segmental functions were selected to
describe the progress of root elongation over time based on three cri-
teria: determination coefficient (R2), meaning of parameters, and
ability to provide answers to specific objectives. The following bi-and
tri-linear equations were used to calculate root parameters:

y = a + bx(x ≤ c) + bc (x > c) + d(x − c)(x > c) (1)

y = a + bx(x ≤ c) + bc(x > c) + d(x − c)(x > c) + de(x− d)
(x > e) + f(x≤ e) (2)

where y is the root depth in cm, x is the time in days, b is the initial RFV
in cm d−1, d is the second phase RFV in cm d−1, and c is the breakpoint
between b and d; e the break point between d and f, and finally f is a
plateau indicating the time when root elongation ceased. In a few cases,
where the root elongation did not show a plateau (Exps. 5, 6, 15, 16;
Table 2; due to limited measurements), linear regression was used:

y = a + bx(x ≤ c) (3)

To identify variables that can predict root elongation we fitted non-
linear models between root elongation and explanatory variables and
then a combination of statistical indexes (R2; Archontoulis and Miguez,
2015) to identify best predictors. The explanatory variables used in this

analysis were: plant height, leaf number in maize, node number in
soybean, leaf area index, plant biomass, thermal time (see below), cu-
mulative rainfall and radiation since planting. Data analysis, model
fitting and parameter estimation was done in GraphPad Prism 7.02
(GraphPad Software, Inc. San Diego, CA, USA). Thermal time was cal-
culated as:

GDD = 0.5* (Tmax + Tmin) − Tb (4)

where GDD is the cumulative growing degree days since planting (°C d),
Tmax and Tmin is the maximum and minimum daily air temperature
(°C), and Tb is the base temperature. A base temperature of 8 °C was
used for both crops (Ritchie and NeSmith, 1991; Wu et al., 2015).

3. Results

3.1. Weather and soil conditions

Compared to 35-year average weather conditions, the six experi-
mental sites experienced a wide range of weather in 2016 (Fig. 1). Four
sites had below average precipitation from June to mid-July, a period of
rapid root growth (Fig. 2a). All sites were warmer than average until
mid-July and cooler until the end of August, except for Northeast
(Fig. 2b). Plant available soil moisture in the top 60 cm ranged from
120 to 240 mm across sites and temporal dynamics followed pre-
cipitation patterns (Fig. 2d). Soil temperature rapidly increased from
May 1 (∼10 °C) to middle of June (∼23 °C) and fluctuated at that level
until the end of August (Fig. 2e). Soil nitrate followed the same tem-
poral patterns across sites, with high soil nitrate levels around the end
of May and low nitrate levels in August (Fig. 2f).

Table 2
Main root system attributes in-row and center-row measurements (means ± standard error) for all field experiments. RFV: root front velocity phase I and phase II (cm d−1), transition
from phase I to phase II (days), maximum depth (cm), root ceased (days) and coefficient of determination R2. CV: coefficient of variation.

Location Exp. ID In-row measurements Center of two row measurements

RVF Phase I RFV Phase II Transition Phase I to II Max Depth Root ceased R2 RFV Phase II Max Depth Root ceased R2

(cm d−1) (cm d−1) (days) (cm) (days) (cm d−1) (cm) (days)

Corn Experiments
Central-Ames 1 0.61 ± 0.1 3.13 ± 0.1 39.9 ± 1.5 154 ± 4 79.6 ± 0.9 0.99 3.56 ± 0.2 146 ± 1 78.7± 1.4 0.95
Central-Ames 2 0.95 ± 0.6 2.98 ± 0.2 26.0 ± 3.1 142 ± 1 65.4 ± 1.6 0.97 3.58 ± 0.3 130 ± 1 61.2± 1.9 0.93
Central-Kelley 3 0.80 ± 0.3 3.47 ± 0.2 26.4 ± 2.1 148 ± 2 57.6 ± 1.3 0.97 3.47 ± 0.2 136 ± 2 62.1 ± 1.8 0.93
Northeast 4 0.32 ± 0.1 2.45 ± 0.1 47.8 ± 3.9 145 ± 2 87.5 ± 3.9 0.94 3.80 ± 0.5 141 ± 1 49.5 ± 2.7 0.88
Northwest 5 1.48 ± 0.2 – 133±2 65.3 ± 2.2 0.81 2.05 ± 0.2 145 ± 1 – 0.91
Northwest 6 1.47 ± 0.1 – 89 ± 1 54.0 ± 0.0 0.95 1.46 ± 0.1 100 ± 1 – 0.99
Southwest 7 0.77 ± 0.1 3.37 ± 0.3 42.6 ± 2.6 157 ± 2 77.5 ± 1.5 0.97 3.87 ± 0.2 155 ± 5 79.6 ± 1.2 0.98
Southwest 8 0.47 ± 0.3 3.08 ± 0.4 33.5 ± 5.0 144 ± 1 71.8 ± 2.8 0.85 2.73 ± 0.2 148 ± 9 83.5 ± 2.4 0.94
Southeast 9 0.58 ± 0.2 3.44 ± 0.1 30.5 ± 4.1 142 ± 9 65.5 ± 4.4 0.95 3.94 ± 1.3 132 ± 8 63.8 ± 2.3 0.97
Southeast 10 0.47 ± 0.0 3.00 ± 0.3 27.1 ± 3.1 140 ± 5 67.0 ± 5.0 0.97 2.78 ± 0.3 129 ± 1 70.3 ± 2.8 0.91
Average 0.62 ± 0.2 3.12 ± 0.3 34.2 ± 8.3 139 ± 2 70.8 ± 9.2 3.12 ± 0.8 137 ± 2 68.6 ± 11
CV% 33.6 10.7 24.2 13.6 13.0 27.0 11.3 16.8
P-value 0.02 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Tukey’s test 0.54 0.32 3.27 16.96 4.76 1.02 9.25 1.69

Soybean Experiments
Central-Ames 11 1.35 ± 0.1 3.88 ± 0.4 46.8 ± 2.1 146 ± 1 69.1 ± 1.2 0.98 4.58 ± 0.3 144 ± 2 71.0 ± 1.1 0.98
Central-Ames 12 1.50 ± 0.1 2.67 ± 0.0 9.7 ± 2.6 140 ± 7 56.9 ± 2.3 0.96 2.70 ± 0.1 137 ± 7 73.0 ± 0.0 0.92
Central-Kelley 13 1.25 ± 0.2 3.11 ± 0.2 28.9 ± 3.7 140 ± 2 60.1 ± 1.7 0.94 2.93 ± 0.2 143 ± 2 71.2 ± 2.2 0.92
Northeast 14 0.42 ± 0.2 3.90 ± 0.1 47.2 ± 2.1 154 ± 4 77.9 ± 1.1 0.92 2.38 ± 0.3 156 ± 7 86.0 ± 0.0 0.82
Northwest 15 1.20 ± 0.1 – 120 ± 1 84.0 ± 0.0 0.96 1.79 ± 0.0 136 ± 2 – 0.91
Northwest 16 1.42 ± 0.1 – 88 ± 1 54.0 ± 0.0 0.98 2.90 ± 0.4 81 ± 14 – 0.67
Southwest 17 1.66 ± 0.5 2.89 ± 0.3 30.2 ± 5.1 156 ± 6 61.3 ± 2.2 0.93 3.50 ± 0.3 156 ± 6 63.5 ± 2.0 0.93
Southwest 18 1.02 ± 0.7 3.17 ± 0.2 20.1 ± 4.8 142 ± 1 57.3 ± 1.8 0.93 3.06 ± 0.4 141 ± 9 60.7 ± 3.0 0.86
Southeast 19 1.32 ± 0.3 3.89 ± 0.0 21.8 ± 3.5 134 ± 4 58.0 ± 3.1 0.97 3.45 ± 0.3 127 ± 8 70.8 ± 2.8 0.94
Southeast 20 1.00 ± 0.2 2.99 ± 0.3 34.0 ± 4.9 135 ± 8 56.7 ± 7.2 0.98 3.20 ± 0.2 126 ± 4 75.5 ± 2.3 0.96
Average 1.19 ± 0.4 3.31 ± 0.5 33.3 ± 10 136 ± 2 62.1 ± 7.5 3.25 ± 0.7 135 ± 2 71.5 ± 7.7
CV% 32.1 15.12 30.6 14.3 16.4 24.3 16 10.7
P-value 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Tukey’s test 0.66 0.51 6.98 5.45 4.23 0.37 3.69 11.16

*Root data from the Northwest site were excluded from average and CV calculations.
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3.2. What is the rate of RFV and maximum depth?

3.2.1. Root front velocity
In-row root elongation measurements showed a tri-linear pattern

over time with an initial low rate (phase I) until 34 days after planting,
followed by a fast rate (phase II) until 67 days after planting when the
maximum depth was observed (Fig. 3; Table 2). The change in rate
occurred at approximately 4.4 visible leaves for maize and 2.7 nodes for
soybean. Root elongation rates for the center-row position followed a
bi-linear increase, with a constant (fast) rate of increase followed by a
plateau. Fig. 3 illustrates these temporal dynamics in two out of the 20
experimental units and Table 2 shows the parameters for all treatments.

During the initial phase, the in-row RFV ranged from 0.32 to
0.95 cm d−1 for maize, and from 0.42 to 1.66 cm d−1 for soybean
across 16 treatments (Table 2, see values in cm °C d−1 in Table S1).
Treatment had a significant effect on the RFV during the initial phase

(P = 0.002) but not during the second phase (P = 0.36). In the second
phase RFV values ranged from 2.45 to 3.47 cm d−1 for maize and from
2.67 to 3.90 cm d−1 for soybeans (Table 2). On average, across all ex-
periments, our results indicate that soybean roots grew 48% faster than
maize during the first phase (Table 2). The center-row RFV ranged from
1.46 to 3.94 cm d−1 for maize, and from 1.79 to 4.58 cm d−1 for soy-
bean, or from 0.13 to 0.24 °C d−1 for maize and from 0.15 to 0.26 °C
d−1 for soybean across experiments (Table 2, and S1).

3.2.2. Maximum root depth
Across all treatments (n = 20), the maximum root depth ranged

from 89 ± 11 to 157 ± 3 cm for maize and from 89 ± 12 to
156 ± 6 cm for soybean (Table 2). These variations were consistent in
both sampling points, in-row and center-row. A statistical analysis
considering all combinations of 20 treatments (site, crop and manage-
ment) as independent treatments indicated significant differences

Fig. 2. Weather and soil conditions at the experimental sites: a) cumulative precipitation difference (2016 year minus 35 years average); b) cumulative temperature difference (2016 year
minus 35 years average); c) cumulative radiation difference (2016 year minus 35 years average); d) average plant available soil water (0–60 cm depth); e) average soil temperature
(0–60 cm depth); and f) total soil nitrate (0–60 cm depth). Note that maize plots were fertilized in May (about 168 kg N/ha) while soybean plots did not receive nitrogen fertilizer. Panel
2f illustrates the average soil nitrate from the two crops.

Fig. 3. Above- and below-ground plant character-
istics and water table measurements in field experi-
ment number 1 (maize) and 19 (soybean). Bottom
panels: root depth measurements (triangles and
squares), regression model fits to the root measure-
ments (black lines) and water table dynamics (blue
circles). Top panels: Leaf or node number (black
symbols) and grain or fruit dry matter accumulation
(grey symbols). Vertical broken lines illustrate the
different phases observed in maize and soybean root
growth. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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among them (P= 0.001; Table S2). Within a site, statistical analysis
indicated that there were significant differences in two of the three
experiments in which different management treatments existed
(P = 0.05), but not between crops (Table S3). In the Northwest, Cen-
tral-Ames and Southwest sites, where planting date was a factor in the
analysis, we observed a 29%, 9% and 5% reduction in maximum root
depth in both crops due to late planting (Table 2). At the Southeast site,
where drainage systems were a factor in the analysis, we did not ob-
serve any substantial variation in root depth (Table 2; Fig. 3b). Inter-
estingly, root depth did not exceed the depth of groundwater table
(Fig. 3b).

3.3. How fast do roots occupy the center-row and when do they reach
maximum depth?

Roots reached the center-row at 42 ± 0.4 days after planting,
equivalent to 480 ± 29 °C d (Fig. 4). The variation among crops and
treatments was small (coefficient of variation 20.4%). In the only ex-
periment where row-to-row spacing was 25.4 cm (Table 1; Exp. ID: 14)
the time requirement to cover the space between two rows was 9 days.
Maximum root depth was achieved about 70 days after planting for
maize and 9 days earlier in soybean (Figs. 4 and S4; Table 2). In both
crops root elongation ceased and maximum depth was observed about
10 days prior to start of grain filling (Fig. 4 and S4).

3.4. To what degree can we predict root depth and which is the best
predictor among soil, crop and weather variables?

Among six explanatory variables, thermal time was the best “easily
measurable” estimator of root depth explaining 76–84% of the varia-
tion in both crops (Figs. 5 and S2, S3). Cumulative precipitation since
planting was the worst estimator. Plant height explained 77–86% of the
root depth variation, LAI explained 80–89% of the variation, leaf
(maize) or node (soybean) number explained 84–90% of the variation,
and above-ground biomass explained 84–90% of the variation. Fol-
lowing this exploratory analysis, root depth data were pooled by crop
and measurement position (in-row versus center-row) to derive average
predictive functions (Fig. 5). In this analysis, we fitted bi- and tri-linear
models to derive biological meaningful parameters and the rates of
increase per phase are provided in Fig. 5. Root elongation ceased at
886 °C d for maize and 816 °C d for soybean. The rate of root elongation
in center-row measurements was lower and ceased later compared to
the in-row measurements (Fig. 5).

3.5. Root depth and water table

Depth to water table explained a large amount of variation in
maximum root depth (R2 = 0.61; P = 0.0004: Fig. 6). The deeper the
water table, the deeper maximum root depth. In this analysis, water
table data was averaged for a period of two weeks prior to final root
measurement date (beginning of grain filling period). That was neces-
sary given the dynamic nature of water table in the soil. Across sites, the
two-week average water table depth from the soil surface ranged from
79 to 214 cm (Fig. 6). The shallowest water table depth was observed in
Southeast (plots without subsurface drainage) and the deepest was in
Southwest site.

4. Discussion

Our destructive sampling approach to track roots captured inter-
acting factors that the root system experiences under field conditions
(Passioura, 2006; Paez-Garcia et al., 2015). By coupling root mea-
surements with soil, crop and weather information, we were able to
develop predictive functions (Fig. 5, S2 and S3) that could be used for
root phenotyping in breeding programs where root growth has pre-
viously been largely ignored. Furthermore, results from this study that
captured a range of environmental conditions using six sites and 20
treatments can inform crop model improvements, and assist agronomic
and water quality assessments in the Midwest, USA.

4.1. Root front velocity

Our frequent in-season root depth observations revealed two dis-
tinct phases in root elongation for corn and soybean (Fig. 5), which is in
line with previous observations for sorghum (Robertson et al., 1993)
and sunflower (Meinke et al., 1991). Corn and soybean crops had dif-
ferent RFV values early in the season but about the same during the
mid-season (Tables 2 and S1), in contrast to our listed hypothesis.
Previous studies reported a constant RFV (Kaspar et al., 1984) most
likely due to a lack of high-resolution measurements to reveal the break
point or due to position of measurement (in-row vs center of two rows;
Figs. 3 and 5). In one of our six sites where less frequent measurements
were taken (Northwest; Table 1) we were unable to calculate two rates
(Table 2). This means that a strategic sampling is needed to capture key
root parameters; our study provides guidance for future measurements
(Fig. 4).

Compared to the limited experimental information available in the
literature our soybean RFV values were higher compared to data from
Nebraska (1.2–1.5 cm d−1; Torrion et al., 2012), Kansas (1.5 cm d−1;
Mayaki et al., 1976) and Minnesota (1.7 cm d−1; Allmaras et al., 1975),
and lower compared to a glasshouse experiment (3.5–4.35 cm d−1;
Kaspar et al., 1983). This variation is likely related to different geno-
type, management, and environmental conditions among studies, as
well as the methodology used to determine RFV (resolution of mea-
surements and position; see coefficient of variation in Table 2). Our
maize RFV values were comparable with previous reported values of
2.56–2.91 cm d−1 (Singh et al., 2010); and lie in the middle of previous
estimates: 3–6 cm d−l (Taylor and Kepler, 1973; Dardanelli et al.,
1997), 1.3 cm d−l (Allmaras et al., 1975) and 1.1 cm d−1 (Cahn et al.,
1989).

In crop modeling use of a constant thermal time downward move-
ment rate is common (Boote et al., 2008; Hammer et al., 2009; Yang
et al., 2017). Theoretically this means that crop models over-predict
root elongation in early growth stages (Fig. 4) and under-predict root
elongation in later growth stages. These over- and under-predictions
will affect water and nitrogen stress responses (e.g. Corre-Hellou et al.,
2007). Process-based models such as DSSAT, APSIM, RZWQM, Hybrid-
Maize, Adapt-N as well as commercial models are routinely used in this
high production region to forecast crop yields (Morell et al., 2016),
evaluate nitrogen rates to maize (Malone et al., 2010; Puntel et al.,

Fig. 4. Thermal time requirements for key root phenological events. Maize leaf number
(LN) and soybean node number (NN) are shown. Data are average over 8 soybeans and 8
maize treatments (Northwest site treatments excluded). The error bars show the standard
error of the mean values.
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2016; Sela et al., 2017), and benchmark management practices (Thorp
et al., 2008; Wang et al., 2016) and climate change impacts (Wang
et al., 2015; Paustian et al., 2016; Jin et al., 2017; Schauberger et al.,
2017). To our knowledge, the validity of the root parameters used in
the above modeling studies have not been evaluated. Our results can
assist both calibration of model parameters as well as development of

improved functions towards more accurate model simulations in this
region. For instance linking RFV parameters to leaf number in corn and
node number in soybean (Fig. 4) may improve the simulation of root
depth and plant available water/nitrogen. Importantly our measure-
ments revealed that the position of root measurement can greatly affect
results and RFV parameters (Table 2).

4.2. Time to cover the center-row and cease root growth

Another important result from this study is the determination of the
time needed for the root system to cover the space between 76 cm crop
rows (6th leaf stage for maize; 40 days after planting; 450 °Cd; Figs. 4
and S4). This information can support improved modeling of the root
system and inform in-season nitrogen placement to maize. Rapid root
growth into the center-row may explain the general lack of fertilizer
banding effect on crop yield in the US Midwestern cropping areas
(Randall and Hoeft, 1988; Mallarino et al., 1999).

The timing when root transition occurs from slow to fast rate of
increase was related to leaf number (Figs. 3 and 4 and S3 and 4). The
time when maize reached maximum depth was approximately at silking
or 10 days before the start of grain filling, which is in agreement with
previous reports (Dwyer et al., 1988; Liedgens et al., 2000; Fageria and
Moreira, 2011). On average, soybean root elongation ceased before or
at the onset of pod and grain accumulation (Figs. 4 and S4) with few
exceptions (Fig. 3). We expected soybean roots to keep growing during
grain filling and cease root elongation later than maize due to in-
determinate growth pattern (Kaspar et al., 1978; Torrion et al., 2012).

Fig. 5. Relationship between root depth and thermal
time for maize and soybean crops in Iowa. Symbols
explanations are provided in Table 1. Solid lines are
bi- and tri-linear model fits (parameter values per
treatment are provided in Table S1).

Fig. 6. Relationship between water table and the average of maximum root depth for
maize and soybean across 16 field experiments. Water table data averaged two weeks
prior to the final root measurements. Closed symbols represent maize and open symbols
represent soybean. Symbols explanation is provided in Table 1.
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This might be explained by the short maturity cultivars used in Iowa
(Table 1) and due to water table depth that might constrained further
root growth (Fig. 6).

4.3. Maximum root depth

Our maximum depth observations for maize and soybean agree with
earlier observations made in Iowa (Mitchell and Russell, 1971; Taylor
and Keppler, 1973; Stone et al., 1976; Mason et al., 1982; Kaspar et al.,
1984). This suggests that root traits have not changed over time (in
contrast to plant traits; Duvick and Cassman, 1999; Ciampitti et al.,
2012) given the 30 years difference between our study and previous
measurements in Iowa. Compared to other environments our maximum
depth measurements for both crops were different from other studies
(range: 68–240 cm; Allmaras et al., 1975; Garay and Wilhelm, 1983;
Canadell et al., 1996; Dardanelli et al., 1997; Araki et al., 2000; Qi
et al., 2012; Gao et al., 2014). We believe the variation is due to in-
teraction between genotypes, management and environment, and in
particular due to two factors: cultivar length cycle and shallow water
tables, and also soil temperature and moisture content (Reyes et al.,
2015; van Oosterom et al., 2016). The fact that maize and soybean
maximum root depth measurements were similar in this study (Table 2)
might be attributed to the fact that roots cannot grow under saturated
water conditions due to the lack of oxygen (Weaver, 1926; Stanley
et al., 1980; Armstrong and Drew, 2002; van Oosterom et al., 2016) and
therefore differences between crops could not be easily observed.

Many crop growth modelers work with the assumption that roots
grow in a conical shape. For example, Yang et al. (2017) recently im-
proved the Hybrid-Maize model from having a conical root shape to a
uniform distribution until 30 cm followed by a conical root distribution
to the bottom of the profile. In contrast, we found that roots occupy the
full soil profile relatively quickly and there was no difference in max-
imum depths between these two sampling positions (Table 2). Our re-
sults suggest that maize and soybean roots is possible to take up water
and nutrients from the entire profile in the study sites (Table 2).
However, the root system shape and ability to extract water depends on
the agronomic practices used (e.g. row configuration; Whish et al.,
2005).

4.4. Predictability of root growth and water table effects

The strong correlation between root depth and easily measurable
plant variables (R2 > 0.77) could be considered as useful information
for root phenotyping in breeding programs (Fig. 5, Figs. S2 and S3)
where root growth has been largely ignored. Thermal time was the best
“easily measured” estimator for root elongation in line with our hy-
pothesis (Fig. 5). However, in all correlations we found an increased
variability in root elongation estimations at the deepest depths (see
phase III in Fig. 5). About 61% of this variability was explained by
water table depth in our study (Fig. 6), which confirms our initial hy-
pothesis. This is a very important finding because it indicates that in
addition to temperature, water table depth during the growing season
should be considered for maximum root depth estimation in this en-
vironment, which is also common in many cropping areas at the Corn
Belt regions in US. Most of the crop models applied in this region (see
references above) estimate root depth as a function of temperature, in
agreement with our results, but do not simulate water table depth and
its impact on root and plant growth, which is another area for model
improvement.

Literature studies have shown a 7–27% maize yield increase with
decreasing water table depth from 0.5 m to 1.5 m in Iowa (Ahmad and
Kanwar, 1991; Kalita and Kanwar, 1992; Helmers et al., 2012) and an
optimum water table depth for maximizing maize production in other
environments (Florio et al., 2014). In our study we did not find a sig-
nificant correlation between water table depth and yield (P > 0.30;
Fig. S5), but observed root depth variation in response to water table

depth (Fig. 6). Crop yield response to water table is simply expression of
root functioning in response to moisture conditions. More studies are
needed to fully understand the mechanisms by which root water and
nitrogen uptake as well as root senescence are affected by shallow
water tables (e.g. Stanley et al., 1980; Dickin and Wright, 2008). This
becomes even more important considering the increasing climate
variability in this region (Dai et al., 2015) and the fact that in-season
precipitation (35-year average: 498 ± 20 mm) is above the optimum
amount found (320–430 mm) to maximize production and environ-
mental performance of maize and soybean systems in Iowa (Dietzel
et al., 2016).

5. Conclusion

This study provided new data on RFV and maximum depth for
maize and soybean crops across six sites and 20 experimental treat-
ments in Iowa, USA. Our results demonstrated that maize and soybean
root systems had different RFV values early in the season but similar
RFV values during the mid-season and reached about the same max-
imum depth in the study sites. For RFV we found two different rates of
increase (early and late) during crop growth. Root system attributes
such as time to reach maximum depth, time to reach the center of two
rows, and time when RFV change rate from early to late phase were
quantified and could be useful in process-based models to provide an-
swers to practical management questions. The correlations between
below-ground and above-ground plant traits could be useful to assist
phenotyping in breeding programs. A particularly important result from
this study was the significant correlation between maximum root depth
and water table depth. Our results suggests that besides temperature
that drives RFV, water table levels should also be taken into account for
maximum root depth determinations in this environment, which is also
common in many cropping areas at the Corn Belt region of the US.
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A B S T R A C T

Accurately forecasting crop yield in advance of harvest could greatly benefit decision makers when making
management decisions. However, few evaluations have been conducted to determine the impact of including
weather forecasts, as opposed to using historical weather data (commonly used) in crop models. We tested a
combination of short-term weather forecasts from the Weather Research and Forecasting Model (WRF) to predict
in season weather variables, such as, maximum and minimum temperature, precipitation, and radiation at four
different forecast lengths (14 days, 7 days, 3 days, and 0 days). This forecasted weather data along with the
current and historic (previous 35 years) data were combined to drive Agricultural Production Systems sIMulator
(APSIM) in-season corn [Zea mays L] and soybean [Glycine max] grain yield and phenology forecasts for 16 field
trials in Iowa, USA. The overall goal was to determine how the inclusion of weather forecasting impacts in-
season crop model predictions. We had two objectives 1) determine the impact of weather forecast length on
WRF accuracy, and 2) quantify the impact of weather forecasts accuracy on APSIM prediction accuracy. We
found that the most accurate weather forecast length varied greatly among the 16 treatments (2 years × 2
sites × 2 crops × 2 management practices), but that the 0 day and 3 day forecasts were, on average, the most
accurate when compared to the other forecast lengths. Overall, the accuracy of the in-season crop yield forecast
was inversely proportional to forecast length (p = 0.026), but there was variation among treatments. The ac-
curacy of the in-season flowering and maturity forecasts were not significantly affected by inclusion of weather
forecast length (p = 0.065). The 14 day forecast provided enough lead time to improve flowering prediction in 8
out of the 16 treatments. The fact that maximum temperature was the most accurate predicted variable by WRF
was the reason for improvements in flowering predictions. Our results suggest that a weather forecast from WRF
was not better than historical weather for yield prediction.

1. Introduction

Forecasting crop production in-season is becoming increasingly
important for agricultural producers to make informed crop manage-
ment and financial decisions (Hansen et al., 2004; Hansen and Indeje,
2004; IPCC, 2013; Newlands et al., 2014). Access to near real-time
agronomic information could potentially lead to increased profitability
by adapting nitrogen management, chemical applications, planting and
harvest dates (Horie et al., 1992; Lawless and Semenov, 2005; Howden
et al., 2007). Furthermore, improved methods of forecasting crop pro-
duction can also be beneficial in making marketing decisions that could
increase farm profitability (Anderson, 1973; Jones et al., 2000; Brandes
et al., 2016; Johnson et al., 2016).

There are several approaches currently being used or developed to
produce in-season crop forecasts, which cover a broad range of largely

empirical/statistical techniques to more physically based approaches
(Basso et al., 2013). Different approaches have tradeoffs between in-
creasing inference and explanatory power as well as customization at
the scale and resolution needed for individual decision makers and land
managers. For example, there are yield forecasting approaches that rely
on crop models, which are driven by a combination of current and
historical weather data (Cantelaube and Terres, 2005; Chipanshi et al.,
2015; Ferrise et al., 2015), remote sensing and satellite image analysis
(Myers, 1983; Basso et al., 2013; Bolton and Friedl, 2013), and in-
season farmer-based surveys (NASS, 2015).

Crop modeling offers explanatory power in addition to forecasting
power but this comes at the cost of extensive amounts of input data and
parameters (Basso et al., 2012; Puntel et al., 2016). Locally adapted and
tested crop simulation models allow one to quickly explore the pro-
duction outcomes of a range of management alternatives under a range

http://dx.doi.org/10.1016/j.fcr.2017.09.008
Received 22 March 2017; Received in revised form 30 August 2017; Accepted 7 September 2017

⁎ Corresponding Author.
⁎⁎ Corresponding Author.
E-mail address: sarchont@iastate.edu (S.V. Archontoulis).

Field Crops Research 214 (2017) 261–272

0378-4290/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
http://dx.doi.org/10.1016/j.fcr.2017.09.008
http://dx.doi.org/10.1016/j.fcr.2017.09.008
mailto:sarchont@iastate.edu
http://dx.doi.org/10.1016/j.fcr.2017.09.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fcr.2017.09.008&domain=pdf


of forecast climatic conditions (Hammer et al., 1996; Meinke et al.,
1996; Carberry et al., 2000; Jones et al., 2000; Royce et al., 2001).
Remote sensing techniques are mostly descriptive and well suited for
regional scale forecasting (Atzberger, 2013). Farmer-based surveys are
helpful to obtain information directly from the field, but rely on vo-
luntary participation and do not have strong predictive insight.

Crop phenology and final yields are highly dictated by weather
variables such as radiation, precipitation, and temperature (Barnett and
Thompson, 1982; Tollenaar et al., 2017). Thus, the accuracy of pre-
dicting weather inputs is critical for crop simulation based yield fore-
cast and the addition of a weather forecast could potentially add value.
However, there are obstacles due to the lack of accurately forecasted
weather data that is available in near real-time and compatible with
crop model weather input requirements (Hansen et al., 2004).

The majority of current crop model forecasting approaches rely on
the combination of current and historical weather data to calculate
yield probabilities in regions ranging from Australia (Carberry et al.,
2009), to Canada (Chipanshi et al., 2015), and Europe (Williams and
Falloon, 2015) as well as, USA (Archontoulis et al., 2016a; Morell et al.,
2016). A difference among the above listed crop model forecasting
approaches is the number of historical weather years used, the structure
of the crop models, the temporal resolution of weather data (hourly vs
daily) and the number of weather variables (e.g. solar radiation, tem-
perature, precipitation, humidity and wind speed) needed by different
crop models.

Among the aforementioned weather variables, temperature and
precipitation forecasts can be easily found and they have been tested in
crop models (Gowing and Ejieji, 2001; Basso et al., 2013; Asseng et al.,
2016). These studies, suggest that multi-day weather forecasts may be
accurate enough for yield and phenology predictions but did not test
the impacts of forecasted solar radiation or weather forecasts of dif-
ferent lengths. This is most likely due to the difficulty in obtaining
readily available daily radiation output from weather forecasts. To our
knowledge, there are a few weather forecasting models that provide
nearly complete forecasted weather data (including solar radiation),
that is easy to obtain for use in crop models. These include National
Digital Forecast Database (NDFD; 4-day forecast), the Climate Forecast
System (CFS; 6-months forecast), and the Weather Research and Fore-
casting model (WRF) that can be run for different forecast lengths of
one’s choosing.

Including a weather forecast that produces a consistent set of all key
weather variables and is run explicitly for an area where crop yields and
phenology are to be predicted could have advantages. For example, we
could see if the forecasted weather is greatly different from normal or
historical weather (commonly used in yield forecasting). A crop model
capable of reflecting the impact of anomalous weather on key agro-
nomic variables (e.g. yield and phenology) could give lead time to
adjust strategic in-season management decisions. This predictability
offers the potential to adjust agricultural management decisions to ex-
pected climatic variations to reduce adverse impacts or take advantage
of favorable conditions (IPCC, 2013; Newlands et al., 2014). Greater
lead time would give users more time to plan operations, but may come
at the cost of decreased forecast accuracy.

To determine the tradeoff between accuracy and lead time of
weather forecasts into crop model predictions we incorporated four
different weather forecast lengths from the Weather Research and
Forecasting Model (WRF) into the Agricultural Production Systems
sIMulator (APSIM) crop model, which were used to predict crop yields
and phenology. The overall goal was to determine the dependence of
the weather forecast accuracy and length on the performance of APSIM
yield and phenology predictions. We hypothesized that:

1) the accuracy and variability of crop yield predictions will be in-
versely proportional to the weather forecast length and

2) the inclusion of an explicit weather forecast will reduce crop yield
prediction uncertainty and produce a reliable estimate with more

lead time relative to using historical variation alone.

To test these hypotheses, we utilized a well-calibrated crop model
with a set of 16 treatments (2 years × 2 sites × 2 crops × 2 manage-
ment practices) and calculated metrics to assess accuracy and varia-
bility for four forecasts lengths (0 day, 3 day, 7 day, and 14 day). We
also conducted a weather variable sensitivity analysis on APSIM si-
mulations of yield to quantify the impacts of error in each weather
variable. We selected crop yield and phenology as variables to test the
impact of WRF inclusion because both are of great interest to stake-
holders and also because these variables are affected differently by
weather, e.g. phenology is mostly driven by temperature while yield is
affected by all variables. Our approach is the first to combine a com-
plete set of forecasted data for all four weather variables needed in the
APSIM model for in-season forecasts.

2. Methods

2.1. Field experiments

Our coupled weather and crop forecast experiment was evaluated at
two Iowa sites, the Agricultural Engineering and Agronomy Research
Farm in Ames, IA, (42°01′20.37″N, 93°46′36.05″W) and the Northwest
Research Farm in Sutherland, IA (42°55′28.78″N, 95°32′20.39″W). At
each location, corn and soybean crops were grown over two years
(2015–2016) in a corn-soybean rotation. Two planting dates (early and
late planting) were included in the experimental design; approximately
3–4 weeks apart. The combination of sites, years, crops, and manage-
ment resulted in 16 treatments which were used to test WRF and APSIM
model predictions. The 16 treatments were, Ames corn early (ACE),
Ames corn late (ACL), Ames soybean early (ASE), Ames soybean late
(ASL), Sutherland corn early (SCE), Sutherland corn late (SCL),
Sutherland soybean early (SSE), and Sutherland soybean late (SSL) over
two years. Management details per experiment are provided in sup-
plementary Table S1.

2.2. Crop and weather observations

In each site several soil, crop, and weather variables were measured
during the growing season. Weather data were recorded hourly by a
weather station located at the borders of each experiment (Iowa
Environmental Mesonet; IEM; https://mesonet.agron.iastate.edu/).
Crop variables such as phenology, morphology (leaf or node number,
leaf area index), biomass accumulation and partitioning to different
plant tissues, and carbon and nitrogen concentration were measured
destructively 8–10 times over the growing season (data not shown).
Grain yield at physiological maturity was harvested and expressed with
0% moisture in this paper. Soil moisture and groundwater measure-
ments at different soils depths were obtained every 30 min using
Decagon sensors (data not shown). Soil nitrate was measured bi-weekly
from April to November every year at the forecast sites (data not
shown). The soil and crop data were used to calibrate the APSIM soil
and crop models used in this study, which is part of a larger forecast
project (Archontoulis et al., 2015; 2016a,b).

2.3. The WRF model description and configuration

The Weather Research and Forecasting Model (WRF V3.6.1;
Skamarock et al., 2008) was used to forecast weather variables required
for input into the crop model with varying forecast lengths (14 days,
7 days, 3 days, and 0 days). WRF was chosen for the ability to obtain
radiation data from the forecasts. The 0 day forecast was a combination
of current and historical weather, with no forecast from WRF. WRF was
run with two domains, the outer domain had a grid spacing of 51 km,
while the inner domain was centered over the Central U.S. with a grid
spacing of 17 km (Harding et al., 2016 and Sines, 2016). There are two
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external data sources needed to run the Weather Research and Fore-
casting Model, the first is static geographical data and the second is
gridded meteorological data. For static geographical data, information
from the U.S. Geological Survey (USGS) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) were used and for gridded me-
teorological data, 3-hourly data from the Global Forecast System (GFS)
were used. This gridded data was chosen for its ability to forecast up to
14 days in advance, which is the longest forecast being used in this
study. More information of the WRF model configuration can be found
in supplementary Table S2.

WRF model outputs were analyzed for each forecast site using
Matrix Laboratory and Statistics Toolbox (MATLAB, Release 2015b, The
MathWorks, Inc., Natick, Massachusetts, United States). WRF provided
hourly output that was averaged into daily output, which is the time
step APSIM uses. Daily maximum and minimum temperature (°C), total
daily precipitation (mm) and daily radiation (MJ day−1) were obtained
from the forecast data per location. These forecasts were initialized on
the 1st and 16th of every month from May through October. From the
WRF output we used shortwave surface total of solar irradiance, in-
cluding direct and diffuse to calculate daily radiation (referred to as
radiation hereafter; Skamarock et al., 2008).

Weather files were then made for APSIM by using the current year’s
observed weather, from the IEM, up to the forecast date, then the WRF
weather forecast was included for the forecast time period, and lastly,
35-years of historical weather data were added to the file (Fig. 1). For
example, if June 1st was the forecast date, the observed weather for
2015 from January 1st to May 31st would be the first piece of weather
information in the file. Then, the WRF forecast would be inserted for
the number of days being forecasted, if the forecast was a 3 day weather
forecast the dates June 1st to June 3rd would be added to the file.
Lastly, 35 years of historical weather data would be added for the re-
mainder of the year, from June 4th to December 31st, to capture the
range of historical variations. This process was done for four different
WRF forecast lengths and at both locations each time the crop model
was run, creating eight different weather scenarios for each forecast
date.

2.4. The APSIM model description and configuration

The Agricultural Production Systems sIMulator (APSIM; Keating
et al., 2003; Holzwort et al., 2014) is an advanced simulator of agri-
cultural systems. The APSIM software combines several process-based
models in a modular design and is open source. The model operates at
field scale that runs on a daily time step. The APSIM version 7.8 was
used in this study.

Briefly, the corn and soybean crop models in APSIM simulate daily
biomass accumulation using a combined light and water use efficiency
approach (Keating et al., 2003). Water and nitrogen stresses on crop
growth, leaf elongation and senescence, phenology and grain accumu-
lation are included in the crop models. Daily biomass gain is distributed
to various plant organs using phenological driven algorithms. Crop

phenology is calculated using a 3-h approach and crop specific cardinal
temperatures (Wilson et al., 1995; Robertson et al., 2002). Grain yield is
the product of many processes within the model. In terms of soil
modeling, the following APSIM models were used in this study: the
SWIM model (Huth et al., 2012) for simulation of soil water and fluc-
tuating water tables which uses the Richards equation, the SoilN and
Surface Organic matter models (Probert et al., 1998; Thorburn et al.,
2001) for the simulation of carbon and nitrogen cycling per soil layer
and residue decomposition which affects soil carbon, nitrogen, water,
and temperature. For more information on the APSIM models we refer
to the on-line documentation: (www.apsim.info).

Over the past years the APSIM model has been successfully applied
in Iowa regions to simulate production (Hammer et al., 2009;
Archontoulis et al., 2014a,b; Dietzel et al., 2016; Puntel et al., 2016; Jin
et al., 2017) and environmental aspects of US Midwestern corn and
soybean cropping systems (Malone et al., 2007; Archontoulis et al.,
2016a,b; Basche et al., 2016; Martinez-Feria et al., 2016).

2.5. APSIM simulation set-up, calibration, and sensitivity analyses

The simulation of soil and crop variables started January 1st each
year. Profile soil water, nitrate, and ammonium values were initialized
by running the model for historical years (corn-soybean rotation with
known management) and were adjusted after January 1st (if needed) to
match pre/in-season soil water and nitrogen field measurements
(Archontoulis et al., 2015; 2016a,b). Total soil carbon and nitrogen
were measured to a 1 m depth at each site. Hydrological parameters
were taken from Web Soil Survey (Soil Survey Staff, 2006) and cali-
brated to match soil water and groundwater measurements (Table S3).
Local crop cultivars were used in the simulation (Archontoulis et al.,
2014a,b). In the corn model we made the following changes: the ra-
diation use efficiency parameter increased to 1.8 from 1.6 g MJ−1, the
critical N concentrations for stem and grain were modified (decreased)
to match observations. In the soybean model we decreased the grain N
critical concentration to better match experimental data (from 6.5 to
5.8%). Changes to crop model parameters were based on 2015 data and
were maintained in 2016 simulations. Higher RUE values and lower
grain N concentrations for modern hybrids compared to default APSIM
parameters are also supported by literature data (Duvick and Cassman,
1999; Lindquist et al., 2005; Ciampitti and Vyn, 2012).

To explore the relative impact of weather variables into APSIM crop
model predictions of yield and phenology we performed a sensitivity
analysis by changing one weather variable at a time (e.g. radiation) by
+30%, +15%, −15% and −30%. This analysis was performed across
all 16 treatments. To quantify the probability that changing weather
variables by 15% and 30% were in the context of historical variability
we performed a second analysis using 35 historical years. For this
analysis the average of all 35 years of historical data were calculated for
maximum temperature, minimum temperature, precipitation, and ra-
diation. This average value was then increased and decreased by po-
sitive and negative 15% and 30% to obtain a range of values. Each

Fig. 1. Visual representation of combining weather with the crop model to obtain yield and phenology predictions. Weather is broken down into 3 categories, current, WRF forecasts (3,
7, and 14 day), and 35 years of historical weather.
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individual year was then compared to the increased and decreased
values to determine if that change in weather variable occurred and
how often in the last 35 years. Yearly values were placed into cate-
gories, category 1 (−30% to −15%), category 2 (−15% to 0%), ca-
tegory 3 (0% to 15%), category 4 (15% to 30%) and category 5 (30%
and up) and percentages were calculated based on how many years of
the 35 were in that category.

2.6. In-season forecast of crop yields and phenology

In-season forecasts of crop yields and phenology were driven by a
combination of actual, historical, and WRF-simulated weather data
(Fig. 1). The in-season forecast started at crop planting and was updated
every 14 days until the end of the growing season. Each time we used
actual weather data up to the date of forecast, followed by 14, 7, 3, or
0 days WRF forecasted data and finally by 35 historical weather years
(1980–2014). For each forecast (except the last one where the full
weather was known) the model provided 35 predictions for crop yields
and phenology for 2015 and 2016. From these data we calculated the
median prediction and the standard error. The combination of 16 crop
treatments, 11 in-season forecasts, four lengths of WRF forecasted data
and 35 years of historical weather resulted in 24,640 simulations.

2.7. Model evaluation and data analysis

Different metrics were used to evaluate WRF and APSIM prediction
accuracy. We computed the root mean square error (RMSE) and the
normalized root mean square error (NRMSE) to estimate the actual and

relative error associated with weather, crop yield, and phenology pre-
dictions (Archontoulis and Miguez, 2015). To compare the forecast
accuracy of the WRF model all of the 14 day WRF forecasts for each
weather variable were concatenated to form a full forecasted weather
data set from May through October each year. We also calculated the
number of days that WRF weather variables had an absolute error of
20% or below compared to observed values using the following equa-
tion:

= ⎛
⎝

− ⎞
⎠

Error F O
O

% 100*
(1)

where F is the forecasted value and O is the observed daily weather
value. For maximum temperature, minimum temperature, and radia-
tion the error percentage was calculated daily for each forecast, while
precipitation forecasts were summed over the forecast period and then
compared to the sum of the observed days. Once the percent error was
calculated the number of days (per month) that had an error below 20%
were summed together for each forecast length and then normalized to
get a value between 0 and 1. This 20% benchmark was set based on the
results of the weather sensitivity analysis (shown later).

To detect periods within the season when the forecasted weather
had notable errors, we calculated cumulative differences between
forecasted and observed data for all weather variables. To evaluate the
accuracy of the combined APSIM-WRF models yield and phenology
forecasts across 16 field trials, we calculated a cumulative index per
trial that accounts for all 14 in-season forecasts by using the following
equation:

Fig. 2. Cumulative difference in thermal time (a, b; base temperature zero), cumulative difference in precipitation (c, d), and cumulative difference in radiation (e, f) between 2015 and
2016 minus 35 historical years (climatology; 1980–2014) for Ames (a, c, e) and Sutherland (b, d, f) Iowa, USA.
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Where yti is the simulated yield at time ti (approximately every 14 days
after planting until the end of the season), and yfinal is the final simu-
lated yield using observed weather data. The absolute accuracy value of
each yield forecasting date was taken and then summed cumulatively
over the entire growing season to get the total amount of accuracy for
each forecast length. The absolute value was taken to avoid compen-
sation of over-predictions with under-predictions. The higher the
number the more accurate the forecast was. A linear regression was
performed to determine if yield and phenology prediction accuracy was
inversely proportional to forecast length. A p-value< 0.05 was con-
sidered significant.

3. Results

3.1. Observed weather conditions versus 35-year average

Temperature, rainfall and radiation followed different patterns
throughout the 2015 and 2016 years as compared to the 35-year
average (Fig. 2). Across the growing seasons, Ames was both warmer
and wetter than the 35-year average in both years. Weather in Su-
therland was similar to the 35-year average in 2015 and warmer and
wetter in 2016. Cumulative thermal time in Ames and Sutherland was
larger in 2016 than in 2015 (Fig. 2a and b). Total precipitation in Ames
was above climatology for both years, while Sutherland had pre-
cipitation closer to average (Fig. 2c and d). Cumulative radiation in
Ames was close to historical average in 2016 and a bit less in 2015,
while Sutherland had both years less than historical average (Fig. 2e
and f).

3.2. WRF model performance

Daily maximum temperature was forecasted the most accurately
with an average RMSE and NRMSE of 4.9 °C and 20.3%, respectively,
across years and sites. In terms of the accuracy of other weather vari-
ables, there were inconsistencies between the two study years. In 2015

daily radiation was second most accurately forecasted
(RMSE = 8.3 MJ m−2 season−1; NRMSE = 45%) across sites, followed
by daily minimum temperature (RMSE = 5.4 °C; NRMSE = 49%), and
finally, daily precipitation (RMSE = 10.6 mm; NRMSE = 327.0%). In
2016 daily minimum temperature was forecasted the second most ac-
curately (RMSE = 4.4 °C; NRMSE = 34%), after maximum tempera-
ture, followed by daily radiation (RMSE = 8.6 MJ m−2 season−1;
NRMSE = 44%), and daily precipitation (RMSE = 12.7 mm;
NRMSE = 438.5%), across sites.

The 14 day forecast, overall had the most error during the growing
season and the 3 day forecast had the least amount of error (Fig. S1).
Maximum temperature was the weather variable with the smallest error
(Fig. S1a, e, i, m). Minimum temperature in 2015 had more error than
in 2016, especially in Sutherland 2016 where error in minimum tem-
perature was low (Fig. S1b, f, j, n).

To determine if WRF over or under prediction comes from a few
individual days or is consistent across days we counted the number of
days per month where WRF predictions exceeded 20% error (Fig. 3).
Maximum temperatures were forecasted the most accurately for each
day across sites and years with ∼90% of the forecasted days having
error below 20% (Fig. 3a, e, i, m). Radiation was forecasted the next
most accurately with> 60% of the forecasted days having below 20%
error (Fig. 3d, h, l, p). Minimum temperature forecasted within 20%
error in approximately 50% of the days per month (Fig. 3b, f, j, n),
while daily precipitation accuracy was very low (Fig. 3c, g, k, o). Also,
our results indicated that WRF simulations were more accurate across
all variables for the months June, July, and August compared with May,
September, and October forecasts (Fig. 3).

3.3. APSIM model performance and sensitivity analyses

The APSIM model simulated flowering date and maturity date with
a RMSE of 2.8 days and 8.3 days respectively across all 16 treatments
(Fig. 4a). The simulation of biomass production of soybean had a RMSE
of 756 kg ha−1 and corn a RMSE of 1932 kg ha−1 (Fig. 4b and c). Corn
yield had a RMSE of 975 kg ha−1 and soybean yield had a RMSE of
608 kg ha−1 (data not shown).

The APSIM crop simulations were most sensitive to changes in

Fig. 3. Normalized values of the 20% error (calculated using eq. 1) for each forecast length. A value of 1 means that all individual forecast days had an error below 20%, while a value of
zero means that all individual forecasted days had an error above 20%. Maximum temperature (a, e, i, m), minimum temperature (b, f, j, n), precipitation (c, g, k, o), and radiation (d, h, l,
p), throughout the growing season for Ames 2015 (a–d), 2016 (e–h), and Sutherland 2015 (i–l) and 2016 (m–p).
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radiation and temperature but not to precipitation across 16 field trials
(Fig. 5a). Historically precipitation and minimum temperature varied
the most, while radiation varied the least in the weather sensitivity
analysis (Fig. 5b). Of the 35 historical years of weather variables, pre-
cipitation varied among all 5 categories (Fig. 5b). Yield was positively
impacted by increased radiation and the effect was higher in the soy-
bean simulations. Maximum temperature was the most influential
weather variable and deviations, either positive or negative, resulted in
yield reductions (Fig. 5a). In the 35 historical years change in radiation

and maximum temperature mostly happened in the range of −15% to
15% (Fig. 5b). Decreasing minimum temperature by 15% caused the
yield to go up but increasing minimum temperature caused the yields to
decline (Fig. 5a). Minimum temperature over the last 35 historical years
was evenly split among the different categories of change in weather
variable.

3.4. Accuracy of in-season forecast and forecast length

The accuracy of in-season crop yield forecasts varied by treatment
when compared to simulated final yield (Fig. S2, Fig. 6a and Table 1).
Yield and maturity date had a similar pattern of an inverse relationship
between forecast length and accuracy, while flowering date had the
opposite pattern with the 14 day forecast being the most accurate.

For example corn yield for both years in Ames was most accurately
forecasted by the 0 day forecast. In both 2015 and 2016 the 3 day
forecast was most accurate for ASE treatment and in 2015 the 14 day
was the most accurate for SSL treatment. Overall, the 0 day forecast was
most accurate 37.5% of the time, the 3 day forecast 25% of the time, the
7 day forecast 25% of the time and the 14 day forecast 12.5% of the
time (Table 1) for simulations of yield across all 16 treatments. The
simulated yields were similar to the median value for all of the forecast
lengths and the measured yield from the field was also similar in the
majority of treatments (Fig. 7). For example, in 2015 forecasted yield

Fig. 4. Measured versus APSIM model simulated flowering date, maturity date (panel a)
and biomass accumulation per crop (panels b and c). Horizontal red lines indicate stan-
dard error of the mean (n = 3 replications). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Weather sensitivity analysis figure, showing the impact of weather variable
changes of negative and positive 15% and 30% and how those impact yield in panel a.
Panel b is showing the percent likelihood of a change in weather variable happening over
the last 35 years. The white empty space in panel a represents the 20% error that was
chosen for weather variables.
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medians were similar to observed and simulated yields for ASE and ACE
(Fig. 7a and c). In 2016, SLC was the only boxplot that had a median
value for observed yield that was not similar to the forecast lengths or
simulated yield (Fig. 7p).

Unlike yield, flowering date had very uniform results for each
treatment in 2015 and then inconsistent results in 2016 (Fig. S3 and
Table 2). Flowering date was not inversely proportional to forecast
length (p = 0.1; Fig. 6b). In 2015, the 14 day forecast was the most
accurate for flowering date for almost every treatment except ACE and
ASE. Overall, the 0 day forecast was most accurate 22.7% of the times,
the 3 day forecast 27.3%, the 7 day forecast 13.6%, and the 14 day
forecast 36.4% (Table 2) for simulations of flowering. Variability in
flowering date prediction (reflected by the box-plot) was very small
between forecast lengths (Fig. S4).

Similar to yield, maturity date in 2016 had consistent results with
the 0 day forecast being the most accurate for every treatment except
for SSE where the 3 day forecast was the most accurate (Fig. S5; Table
S4). In 2015, the results varied greatly by treatment. Across treatments
maturity date was inversely proportional to yield, but it was not sta-
tistically significant (p = 0.065; Fig. 6c). Across 16 treatments, the

0 day forecast was most accurate 52.9% of the times, the 3 day forecast
23.5%, the 7 day forecast 17.7% and the 14 day forecast 5.9% for si-
mulations of maturity. Like flowering date, variability for maturity date
did not vary widely between forecast lengths (Fig. 8). For all of the
treatments the median values of the boxplots were very consistent and
did not vary between forecast lengths (Fig. 8).

3.5. Yield prediction uncertainty over growing season

The uncertainty in crop yield prediction (reflected by the standard
error across 35 simulations) decreased over the entire growing season,
as more of the crop forecasts were forced by observed weather, as op-
posed to historical weather (Fig. 9). Around flowering date for corn, the
variability in yield prediction decreased by 50% (Fig. 9a). In contrast
the uncertainty reduced less by soybean flowering date (Fig. 9b). Both
corn and soybean standard error decreases to 50% around 800 GDD
after planting.

It is interesting to note that 11 of the 16 yield forecasts at planting
time matched end-of season final yields within 10% error, irrespectively
of weather forecast length (Fig. S2). Similarly flowering and maturity
forecasts at planting time match final observations within 10% error in
15 out of 16 treatments (Figs. S3 and S5).

4. Discussion

Inclusion of in-season weather into crop model prediction of crop
yields and phenology has been proposed as a means to increase the
accuracy of crop model predictions (Lawless and Semenov, 2005). We
tested this in a high agricultural production region, Iowa, USA, which
represents 15% and 12% of the total USA corn and soybean production
respectively (NASS, 2015). To our knowledge this is the first work to
evaluate weather forecast impacts on crop model prediction that covers
maximum and minimum temperature, precipitation, and radiation
needed for crop models and a range of crop, sites, year, management
treatments.

4.1. Impact of WRF inclusion into APSIM forecast

Our first hypothesis that the accuracy and variability of crop yield
predictions will be inversely proportional to the weather forecast length
was partially supported by our results (Fig. 6). Our results showed that
the shorter (0 day and 3 day) forecasts were the most accurate for yield
and maturity date prediction, while the 14 day forecast was the most
accurate for forecasting flowering date in 8 of the 16 study cases
(Tables 1 and 2, and S4; Fig. 6). Flowering date occurs in the middle of
the season and is mainly driven by temperature, the accuracy in flow-
ering date with the 14 day forecast was better than for maturity date
and yield. That the 0 day yield forecast was most accurate meant that a
weather forecast from WRF was not better than historical weather,
however in these cases the difference between the accuracy of the 0 day
yield forecast and the other yield forecast lengths was not enough to
rule out using short-term weather forecasts (Fig. S2).

Maximum temperature and radiation were the two variables in the
weather sensitivity analysis that had the largest impact on yield
(Fig. 5a). However, in the historical 35 years both maximum tem-
perature and radiation had zero years in category 1 and category 5, so
the likelihood of either variable having the large impacts on yield is
small (Fig. 5b).This lead us to set a 20% error (Eq. 1) as a benchmark
point to evaluate WRF predictability of weather variables against ob-
servation (Fig. 5a). Interestingly, APSIM can encounter an error of 20%
in precipitation and still have acceptable yield predictions (Fig. 5a).
There are two possible explanations for this lack of sensitivity. First, the
soils in the study sites have a high plant available water holding ca-
pacity (> 250 mm; WebSoilSurvey), on average 641 mm of precipita-
tion during the season (Fig. 2), plus shallow water tables (varies from 1
to 1.7 m below surface during the growing season; Archontoulis et al.,

Fig. 6. Percentage of inaccuracy over the entire growing season by forecast length for
yield (a), flowering date (b), and maturity date (c).
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unpublished) that cumulative effect could buffer water stress, and make
APSIM crop yield prediction insensitive to precipitation. Second, there
were many days when precipitation was zero, a value which remained
the same when multiplied by 15% or 30% during the APSIM weather
variable sensitivity analysis.

The second part of our hypothesis that the inclusion of an explicit
weather forecast will reduce crop yield prediction uncertainty and
produce a reliable estimate with more lead time relative to using his-
torical variation alone was also partially supported. WRF weather
forecasts provided APSIM the ability to give decision makers lead time
when deciding management changes due to the addition of forecasted
weather data. Having enough lead time to make decisions can be
benefited by using forecast lengths with the least variability (Hansen
and Indeje, 2004). When comparing the standard error of yield of all of
the forecast lengths, the 14 day forecast always had the smallest stan-
dard error (Fig. 9c and d). This can be due to the increased amount of
consistent weather data being included into the APSIM weather file,
because there is less variability in the weather forecasts that would

have an impact on APSIM. This brings us to believe that including a
14 day forecast into APSIM can provide decision makers enough lead
time to make field decisions when compared to a 0 day forecast that has
no lead time. The 14 day forecast could provide decision makers en-
ough time to get the equipment or chemicals they need to make changes
to the management practices during the growing season, given also that
the phenology prediction was good (Fig. 9c and d). This agrees also
with findings from Asseng et al. (2016) and Gowing and Ejieji (2001)
that a 14 day forecast may be sufficient to allow for decision making
and management practices to be altered to have an effect on final yield.
However, the 14 day forecast may not be reliable enough for end-of
season yield predictions. The 14 day forecast can provide the lead time
while the 3 day forecast can be used to make the final decision on what
day to spray chemicals, apply side dress, or even harvest.

In general, over the entire growing season there is a decrease in
normalized standard error (a measure of uncertainty) of the median
yield predictions as the season progresses (Fig. 9). Reliable crop fore-
casts have the potential to greatly aid decision making in identifying

Table 1
Cumulative absolute value of accuracy for yield calculated by Eq. (2) among the different forecast lengths. The bold numbers had the best accuracy over the entire growing season. The
higher the number is, the better the accuracy.

Cropping System Acronym Panels in Fig. S2 Weather Forecast Length

14 day 7 day 3 day 0 day

Ames Soybean Early 2015 ASE-15 a 1.97 2.21 3.06 2.52
Ames Soybean Late 2015 ASL-15 b 3.25 3.16 2.53 2.33
Ames Corn Early 2015 ACE-15 c 2.65 4.14 4.63 4.77
Ames Corn Late 2015 ACL-15 d 3.07 5.52 7.35 8.22
Ames Soybean Early 2016 ASE-16 e 1.15 1.43 1.87 1.82
Ames Soybean Late 2016 ASL-16 f 1.72 2.16 2.34 2.77
Ames Corn Early 2016 ACE-16 g 1.10 1.22 1.28 1.32
Ames Corn Late 2016 ACL-16 h 2.48 2.87 2.77 3.01
Sutherland Soybean Early 2015 SSE-15 i 1.54 4.36 2.67 2.24
Sutherland Soybean Late 2015 SSL-15 j 3.03 3.88 2.69 2.78
Sutherland Corn Early 2015 SCE-15 k 1.35 1.75 2.08 1.98
Sutherland Corn Late 2015 SCL-15 l 2.31 3.90 5.09 4.87
Sutherland Soybean Early 2016 SSE-16 m 2.25 2.53 2.44 2.39
Sutherland Soybean Late 2016 SSL-16 n 2.76 2.30 2.27 1.95
Sutherland Corn Early 2016 SCE-16 o 1.76 2.80 4.91 5.38
Sutherland Corn Late 2016 SCL-16 p 1.52 1.61 1.54 1.58
# of times (fraction) most accurate of 16 most accurate 2(12.5%) 4(25%) 4(25%) 6(37.5%)

Fig. 7. Boxplots showing variability in yield prediction for each forecast length averaged across the season (∼10 forecasts) for Ames and Sutherland. Variability in the observed yields
(Obs.) and APSIM model simulations using actual weather data (sim) are also showed.
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potential risks and benefits. However, it is important to ask when
during the growing season a near-final forecast can be made. This
question requires further investigation, but our work indicates that
uncertainty substantially decreases from 100% (at planting) to 50%
about 800 °C-days after planting (Fig. 9a and b).

The first forecast of yield from APSIM was close to the final simu-
lated yields at the end of the season in many of the treatments and
earlier than published studies (Quiring and Legates, 2008; Fig. S2). We
believe this is a very important finding and provides opportunities to
assist N-rate recommendations in the Midwest, given that nitrogen is
applied at planting or early in the season (Puntel et al., 2016). In par-
ticular, process-based models have shown to be capable to assist N
management decisions (Hammer et al., 1996; Shaffer, 2002; Kersebaum
et al., 2005; Rahn et al., 2010; Nendel et al., 2013; Puntel et al., 2016),
but so far the majority of models have being applied ex-post, which
limits in season decision making. Forecast of growing season char-
acteristics in time to adjust strategic pre-planting or in-season N man-
agement decision, offers the potential to account for climatic variations

and to reduce adverse impacts or take advantage of favorable condi-
tions.

The fact that APSIM median predictions (median predication from
35 years of APSIM run on that date) at planting time matched end-of
season yields is most likely due to: a) accurate characterization of initial
soil water and nitrogen, surface organic matter, cultivar characteristics,
and model structure; and b) because 2015 and 2016 weather conditions
were not outside of the 35 year climatology. Results from this work can
inform other modeling platforms and research groups working on
forecasting crop yields and environmental aspects of cropping systems:
DSSAT (Jones et al., 2003; Hoogenboom et al., 2015), SALUS (Basso
et al., 2010, 2012), Hybrid-maize (Yang et al., 2004).

4.2. Reasons for over/under predictions of crop yields during the season

Through the mechanistic approach that APSIM simulates yields we
were able to isolate the instances where yield predictions were in-
accurate and identify the reasons. In many cases an inaccurate weather

Table 2
Cumulative absolute value of accuracy for flowering calculated by Eq. (2) among the different forecast lengths. The bold numbers had the best accuracy over the entire growing season.
The higher the number is, the better the accuracy.

Cropping System Acronym Panels in Fig. S3 Weather Forecast Length

14 day 7 day 3 day 0 day

Ames Soybean Early 2015 ASE-15 a 8.57 20.00 20.00 30.03
Ames Soybean Late 2015 ASL-15 b 22.52 9.00 9.00 7.50
Ames Corn Early 2015 ACE-15 c 16.81 16.81 21.01 21.01
Ames Corn Late 2015 ACL-15 d 65.79 21.98 16.50 9.43
Ames Soybean Early 2016 ASE-16 e 2.84 2.84 3.00 3.00
Ames Soybean Late 2016 ASL-16 f 4.56 5.86 5.13 5.86
Ames Corn Early 2016 ACE-16 g 5.18 5.00 5.18 5.39
Ames Corn Late 2016 ACL-16 h 19.16 16.75 16.75 13.40
Sutherland Soybean Early 2015 SSE-15 i 13.61 11.34 13.61 8.50
Sutherland Soybean Late 2015 SSL-15 j 46.95 6.72 9.40 7.83
Sutherland Corn Early 2015 SCE-15 k 5.73 4.10 4.78 4.30
Sutherland Corn Late 2015 SCL-15 l 9.00 5.14 8.00 6.54
Sutherland Soybean Early 2016 SSE-16 m 8.57 8.57 8.57 7.50
Sutherland Soybean Late 2016 SSL-16 n 11.49 11.49 22.99 15.34
Sutherland Corn Early 2016 SCE-16 o 7.20 7.20 8.47 8.00
Sutherland Corn Late 2016 SCL-16 p 6.00 10.50 7.41 7.41
# of times (fraction) most accurate of 22 most accurate 8(36.4%) 3(13.6%) 6(27.3%) 5(22.7%)

Fig. 8. Boxplots showing variability in maturity date (measured in days) for each forecast length for Ames 2015 (a–d), 2016 (e–h), and Sutherland 2015 (i–l) and 2016 (m–p). Early
planted soybean (a, e, i, m), late planted soybean (b, f, j, n), early planted corn (c, g, k, o), and late planted corn (d, h, l, p) are displayed.
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forecast was the cause of the inaccuracies in the APSIM forecast pre-
dictions during the season. For example in 2015, early planted corn in
Sutherland had two instances where the APSIM model predictions de-
viated substantially from the measured end-of-season yields. The under-
estimation (negative peak around July 1st; Fig. S2k) was influenced by
minimum temperature in the 2nd week of the 14 day forecast. The
forecast was too cold by 6.6 °C on average for the 2nd week of forecast,
which explains why the 7 day forecast did not experience as much of a
shift as the 14 day forecast. The over-prediction (positive peak around
August 1st; Fig. S2k) was due to an increase in daily radiation in the
WRF forecast compared to the actual observed weather by about 41%.
In 2016 there was a similar peak (over-estimation) around August 15th
that appeared in all 16 treatments, mostly in the 14 day forecast length.
This was due to an increase in temperature in the WRF forecast relative
to the observed weather by 4 °C a day during the 2nd week of the
14 day forecast (Fig. S2g, h, o, p). These examples suggests that APSIM
is affected by the quality of the weather forecasts input into the model,
at least during certain times during the growing season (Kouadio et al.,
2015).

4.3. In-season forecast efforts and challenges

Our approach is the first to combine a complete set of forecasted
data for all four weather variables needed in the APSIM model for in-
season forecast. Previous efforts integrating WRF predictions into
APSIM focused on future climate impacts (until 2050; Jin et al., 2017).
The analysis presented here is in-line with the findings of Asseng et al.
(2016) but adds additional insight into each of the meteorological
forcing variables and their relative contribution to uncertainty. Overall,
the weather forecast used in our study was less accurate than that of

Asseng et al. (2016) in terms of precipitation, but more realistic since it
was an actual weather forecast and not an always correct forecast and
included all weather variables. With a better weather forecast it seems
that the APSIM predictions would only become more accurate, pro-
viding an even better yield forecasting tool. Gowing and Ejieji’s, (2001)
study was the most similar to ours in the sense that they used a real
weather forecast implemented into their crop model. They used a 7 day
weather forecast and their meteorological conditions that were un-
available (radiation) were estimated (sun-hours) for the forecasted
period. In our study, radiation was explicitly predicted by WRF without
the need to use sun-hours.

While our study focused on using different forecast lengths, another
way that weather forecasting could be incorporated would be to use
ensemble weather forecasting (Gneiting and Raftery, 2005). Ensembles
would provide many results for each forecast, instead of just one set of
results, but the computation efforts substantially increases. Other
gridded meteorological conditions besides the GFS could also have been
used, however since we wanted 14 days as the longest forecast we used
the GFS. For simplicity, the current study uses the raw output from
WRF. Future adjustments to the approach could include common
weather forecasting procedures such as statistical corrections using
post-processing methods (i.e. MOS; Mendoza et al., 2015).

4.4. Conclusions

Forecasting crop production in-season is becoming increasingly
important for agricultural producers to make informed crop manage-
ment and financial decisions. Our approach contributed both metho-
dologically and with results to further improve how in-season crop
production forecasting can be done. The most important results are: 1)

Fig. 9. Normalized standard error of median yield prediction for all corn (a) and soybean (b) treatments over the 2015 (15) and 2016 (16) growing season. Yield standard error for corn
(c) and soybean (d) by forecast length.
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inclusion of weather forecasting into crop model added little value to
end-of season yield predictions; 2) phenology predictions, which are
largely used to schedule management operations, were benefited by the
weather forecast; and 3) the accuracy of weather forecast was inversely
related to the forecast length (0, 3, 7 and 14 days).
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