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Introduction: During the course of the project two major projects were undertaken 1) Assessment 

of sudden death syndrome in soybean through multispectral broadband remote sensing aboard small 

unmanned aerial systems; and 2) Remote thermal infrared imaging for rapid screening of sudden 

death syndrome in soybean.  
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Project 1: Assessment of sudden death syndrome in soybean through 

multispectral broadband remote sensing aboard small unmanned aerial 

systems 

Back ground: sUAS aerial imagery has been utilized for years in precision agriculture. It is often 

combined or compared to ground-based systems for accuracy. Multispectral sensors are commonly 

used on sUAS platforms to detect canopy reflectance response through the generation of 

multispectral (MS) imagery. The imagery from multispectral sensors, commonly referred to as MS 

imagery, contain reflectance’s response from selected visible to near infrared bands 

(blue/green/red/near infrared). The multispectral imagery generated from reflectance data gathered 

by sUAS-mounted broadband cameras provide useful information on photosynthesis and canopy 

energy balance.  Overall, the capability of sensors aboard sUAS systems to provide data on-whole 

fields within a relatively short time, and the ability to use such data to conduct spatial analysis 

substantially expands research capabilities on topics such as plant health. (Gitelson & Merzlyak, 

1998) (H. Zhang et al., 2013) (Lukas et al., 2016) 

sUAS platforms have provided accurate data when directly compared to ground-based data, but few 

data have been collected on SDS using aerial remote sensing methods. To date, no studies have 

validated sUAS-based methods for accurate SDS detection. The utilization of sUAS to accurately 

assess SDS impacted fields would significantly reduce the time and cost of an evaluation compared 

with ground-based detection methods. The purpose of this research was to compare ground-based 

and aerial remote sensing methods for scoring of SDS, to determine if a novel index derived from 

multispectral sensors can be used for the assessment and quantification of SDS, and to assess if this 

index can be utilized for determination of maturity.   

Methods Utilized: Soybean genotype plots were established in 2016 and 2017 crop seasons at the 

Kansas State University, Kansas River Valley Experiment Field outside of Rossville, Kansas 

(39.11852°, -95.92459°). The dominant soil type was a Eudora silt loam. The study area was selected 

because of a history of SDS impacted crops. No artificial inoculation of the crops with fungus was 



required. No other major diseases were present at the site. Plots were planted on 12 May 2016 and 9 

May 2017 into no-till corn stubble and pre-emergence herbicides were applied to prevent early 

season weed growth. Post-emergence applications of herbicide and manual removal were conducted 

to control weeds throughout the season. Irrigation was applied throughout the growing season to 

maintain adequate soil moisture and to help increase the severity of SDS. Maturity was recorded on 

all plots as the number of days after 31 August when 95% of the pods on the plants had reached 

mature color. Plots were harvested on 29 September 2016 and 4 October 2017. 

Genotypes planted included a Nested Association Mapping population (NAM) consisting of 140 F5 

derived lines from a cross between IA 3023 by LD00-3309 along with checks and experimental lines, 

for a total of 160 entries. Check plots included susceptible and resistant varieties. Some resistant 

varieties maintained a SDS score of 0.  All 160 entries were planted in a randomized complete block 

design with four replications making a total of 640 plots. Each plot consisted of two rows which 

were 3.8 m long with 0.76 m row spacing. Among 160 entries, 16 entries were check varieties, which 

will be henceforth referred to as checks and check plots. The check plots were varieties with known 

SDS susceptibility and provided a benchmark to compare SDS for the remaining entries under 

consideration during this study. SDS resistant checks from maturity groups three and four were 

LD06-7862, Ripley, and LS09-1920. SDS susceptible checks from maturity groups three and four 

were Morgan and Spencer.  Fields were fertilized to ensure no nutrient deficient symptoms 

occurred. 

Ground-based measurements were collected on each plot from near canopy closure to the R7 

growth stage (Fehr & Caviness, 1977), using two Ocean Optics USB2000 hyperspectral 

spectrometers (Ocean Optics, Largo, Florida, USA) mounted on a monopod to collect reflectance 

measurements from 350-1027 nm in increments of 0.38 nm. Data was collected on cloud-free days 

between 10 a.m. and 2 p.m. to limit solar effects 

SDS ratings were taken on all plots at the R6 growth stage of the plants (Fehr et al., 1971). R6 

refers to a growth stage with pod cavity filled, seeds just reaching full size. R6 has been designated for 

SDS scoring because symptom expression tends to be the best developed at this stage. All plots in 

2016 and 2017 were scored for disease severity (Ds) on the scale of 1-9 based on foliar symptoms 

(Table 1) and disease incidence (Di) from 0-100% in 5% increments based on the amount of the plot 

that expressed foliar symptoms (Schmidt, 2007). Scoring was performed on 31 August 2016 and 6 

September 2017 by the same individual to reduce as much variability as possible. Disease index or 

SDS score (Dx) was established by Equation 1 (Nijti et al., 2001) and will range from zero to 100.   

Table 1 - SDS severity scoring guidelines (adapted from Schmidt (2007)) 

Score Description of Symptoms 

1 1-10% of leaf surface chlorotic, OR 1-5% necrotic 

2 10-20% of leaf surface chlorotic, OR 6-10% necrotic 

3 20-40% of leaf surface chlorotic, OR 11-20% necrotic 

4 40-60% of leaf surface chlorotic, OR 21-40% necrotic 

5 Greater than 60% of leaf surface chlorotic, OR greater than 40% necrotic 

6 Premature leaf drop up to 1/3 defoliation 



7 Premature leaf drop up to 2/3 defoliation 

8 Premature leaf drop GREATER than 2/3 defoliation 

9 Premature death 

 

𝐷𝑥 =
𝐷𝑖 ∗ 𝐷𝑠

9
 Equation 1 

Where: 

 Dx = SDS score or disease index 

 Di = Disease incidence 

 Ds = Disease severity 

 

An IRIS+ multirotor (3D Robotics, Berkley, California, USA) and Ritewing Zephyr 3 (Rightwing Rc 

LLC, Apache Junction, Arizona, USA) fixed wing with a 47-inch wingspan sUAS were used as aerial 

platforms to mount spectral sensors and collect aerial imagery. The fixed wing had a designed 

endurance of 30 minutes flight with a payload of up to 400 g; whereas multirotor was designed for 

approximately five minutes of flight time with a similar payload. A modified Sony Alpha 5100 

camera (Sony Corporation, Tokyo, Japan), converted to detect blue (B), green (G) and near infrared 

(NIR) bands (Arrow Consulting LLC, Manhattan, Kansas, USA), was utilized with the fixed-wing 

platform in 2016 and on the multirotor in 2017 to collect aerial imagery. The camera was modified 

by removal of the NIR blocking filter and installing a combination of purpose-designed band pass 

and notch filters that block visible red light from 570-690 mm, and near infrared above 780 nm. The 

installed filters, in combination with the Bayer array filter that is fused to the sensor and normally 

selects light wavelengths appropriately for B, G and R photosites on the sensor, resulted in 

overlapping B and G bands spanning 400-570 nm, and one NIR band (derived from native R 

photosites) spanning the transition of visible red edge to near infrared from 690-780 nm. Blocking 

near infrared light above 780 nm is necessary to avoid confounding responses to near infrared light 

in the B and G photosites. The camera was manually programmed, and settings were maintained for 

all flights. Camera settings were ISO 100, 1/4000 sec shutter speed, and f2.8. No spectral calibration 

of the images occurred during image capture. 

The PI (pigment index), was derived by subtracting the GNDVI from the BNDVI (KSURF 

Invention Disclosure No. 2016-010, 2016). PI assesses reflectance from blue, green, and NIR 

regions captured with a modified broadband camera to assess plant stress (Equation 4). PI changes 

with the changing ratios of carotenoids to chlorophylls. Increased ratios of carotenoids to 

chlorophylls indicate stress conditions in the plant, or other physiological conditions that lead to 

changes in chlorophyll: carotenoid ratios, such as the normal progression through growth stages. 

Low PI values can be a sign of high concentrations of carotenoids, resulting from plant stress.  

It was hypothesized that the introduction of stress and reduction of photosynthetic potential in 

plants suffering from SDS will result in lowered PI-values. To test this hypothesis, an experimental 

field of soybean with varied levels of SDS was assessed to determine the degree of correlation 

between SDS and PI values. As symptoms of SDS progress, the plant is unable to photosynthesize 



at the same rate as healthy plants. The reduction of photosynthesis causes an increase in the blue 

light reflected. PI reduction due to stress and reduced photosynthetic activity are apparent in early 

and late stages of disease progression.     

 

𝐺𝑁𝐷𝑉𝐼 =  
𝑅𝑁𝐼𝑅 − 𝑅𝐺𝑟𝑒𝑒𝑛

𝑅𝑁𝐼𝑅 + 𝑅𝐺𝑟𝑒𝑒𝑛
 Equation 2 

𝐵𝑁𝐷𝑉𝐼 =  
𝑅𝑁𝐼𝑅 − 𝑅𝐵𝑙𝑢𝑒

𝑅𝑁𝐼𝑅 + 𝑅𝐵𝑙𝑢𝑒
 Equation 3 

Where  

 RNIR = Reflectance in NIR (700-1200nm) 

RBlue = Reflectance in blue (400-500 nm) 

 RGreen = Reflectance in green (500-600 nm) 

𝑃𝐼 = 𝐵𝑁𝐷𝑉𝐼 − 𝐺𝑁𝐷𝑉𝐼 Equation 4 

 

Agisoft Photoscan Professional (Ver. 1.2.6, Agisoft LLC, St. Petersburg, Russia) generated an 

orthomosaic using weighted average values of all pixel reflectance values from individual photos. 

Ground reference panels were used for geometric correction and accuracy of the orthomosaic. The 

orthomosaic was then processed in ArcGIS 10.3 (ArcMap 10.4.1, Esri, Redlands, California, USA) 

to calculate GNDVI, BNDVI, and PI (Equations 2, 3 and 4). The spatial analysis tool was used to 

calculate and convert the orthomosaic into GNDVI, BDNVI, and PI maps of the field. The maps 

were generated with a color gradient of green to red indicating high to low vegetative index values, 

Error! Reference source not found.. Transects (approximately 3.8min length) were established 

through the approximate center of each row to extract and determine average GNDVI, BNDVI and 

PI for each plot. 

Results:  

Significant (p ≤ 0.01) correlations between PI and SDS scores were observed within the 2016 check 

plots with aerial imagery and ground-based spectrometer data. Aerial and ground-based 

spectrometer data explained 90 and 73% of the variation in SDS scores of the check plots, 

respectively (Table 2). The increased accuracy and reduced variability from aerial to ground-based 

data could be accounted for as the broad band sensor covers the range of the carotenoid response 

while the GNDVI component of the ground-based PI fall outside the range of the carotenoid 

response. The broader wavelength range used in each channel of the broad band sensor results in 

complete coverage of the carotenoid response (Figure 1). Broadband camera bands overlap on the 

fringes of each band ensuring that the entire blue and green bands are covered while the 

spectrometer only accounts for a small portion of the blue and green bands. The ground-based 

GNDVI does not fall in the range of the carotenoid response however the BNDVI remain in the 

response range. Reassessment of the GNDVI to include wavelengths with in the carotenoid 

response (485 nm and 515 nm) was done to see if this would improve the ground-based results. 

These results showed the adjusted GNDVI (P=0.2265) and PI (P=0.0641) to both not be 

statistically significant. Thus, the greater accuracy of the aerial system to identify SDS justified the 



exclusion of the ground-based unit for the 2017 season in favor of using only aerial imagery. Aerial 

systems can provide breeders, farmers and service providers a means to more rapidly assess SDS at 

relevant spatial scales. 

 

Figure 1 - Absorption bands of Chlorophyll a and b, and carotenoids. 

An additional factor that may play a role in improved accuracy when using aerial systems is the 

shorter duration of data collection. sUAS missions took considerably less time to collect data 

(average flight time of approximately 11 minutes) compared to ground-based systems (average four 

hours) for the same area. During short duration aerial flights there were less changes in 

environmental factors that could influence data quality, including temperature, solar angle, wind, and 

cloud cover as compared to the several hours needed to complete ground-based surveys.  

Table 2 – Aerial and ground-based data comparison. R2 given for SDS score, severity, and incidence 

of check plots. Statistically significant values (P < 0.01) are noted by an asterisk (n=10) 

Variable Aerial Ground-Based 

SDS score 0.90* 0.73* 

Severity 0.80* 0.74* 

Incidence 0.80* 0.63* 

 

PI exhibited the highest correlation with SDS scores among the three indices (GNDVI, BNDVI, 

and PI) for FD2 and FD3 (Table 3). GNDVI was not significantly correlated with SDS scores for 

either FD2 or FD3. BNDVI was significantly correlated with SDS on both dates, but the 

correlations (-0.36 and -0.35 for FD2 and FD3) were considerably lower than when using PI (-0.79 

and -0.72 for FD2 and FD3).  

Table 3 - Spearman's Rho of GNDVI, BNDVI, and PI with SDS score for FD2 and FD3. 

Statistically significant values (P < 0.001) are noted given an asterisk (n=160) 
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DAY GNDVI BNDVI PI 

FD2 -0.08 -0.36* -0.79* 

FD3 -0.07 -0.35* -0.72* 

 

Breeding programs will eliminate the genotypes with the highest response to SDS to increase 

resistance to SDS. Since SDS infection was low in 2016, the 2017 data was used to assess the ability 

of PI, BNDVI and GNDVI to identify plots with high SDS for elimination. The top 50% of the 

entries based on SDS scores were compared with the bottom 50% of the entries based on PI values 

to quantify the percentage of susceptible entries identified correctly using PI. SDS scores for the top 

50% of the entries with the most severe SDS ranged from 30 to 94. The lowest 50% of the entries 

based on the PI from FD2 recognized 80% of top 50% of the entries with the most severe SDS. 

The lowest 50% of the entries based on the PI from FD3 recognized 79% of top 50% of the entries 

with the most severe SDS. Using BNDVI as the selection criteria correctly identified 69% and 73% 

of the top entries for FD2 and FD3, respectively. GNDVI only identified 54% and 64% of the most 

severely infested entries for FD2 and FD3, respectively. The comparison of results showed that PI 

could better characterize SDS than BNDVI and GNDVI when the aerial imagery was collected 

when SDS leaf symptoms were visible and before plant senescence. Overall, the results indicated PI 

can assist both breeders and potentially farmers in identifying high SDS infected soybean with high 

confidence on a spatial scale. 

Conclusions: This study exhibited that aerial SDS assessment using a sUAS data collection method 

was comparable to ground-based data collection methods, and SDS is quantifiable from aerial 

platforms over a whole field. PI acts as an indicator of SDS indirectly correlating to SDS score, 

incidence and severity. PI derived using aerial imagery showed a strong negative correlation to the 

SDS scores for checks and high scoring SDS plots in 2016. Analysis of PI from aerial imagery as a 

detector of SDS provided results comparable to ground-based system with the aerial system showing 

a stronger relationship with less variability. Decreased variability in the aerial scores was explained by 

the ability for the broadband sensor to cover the range of the carotenoid response. Overall, the 

aerial imaging systems can provide field data in a relatively short amount of time with potentially 

minimal environmental variability and improved SDS estimation though PI as compared to the 

ground-based collected data. 

Aerial PI also presented a strong correlation over a whole field in the 2017 growing season. 

Individual components of SDS score, severity, and incidence were analyzed to assess their strength 

as measurements of SDS. SDS severity maintained the least variability and highest correlation to PI 

across the 2017 data including SDS score. Additionally, ability of PI to detect SDS severity is a 

promising indicator for SDS identification across all field sizes including large farming operations. 

Further, PI presented a strong correlation to the maturity of plots. PI not only acts as an indicator of 

plant health but also plant senescence and maturity.  

In soybean breeding programs, time available for phenotypic evaluation is one of the largest 

restraints in breeding new lines. The ability to use sUAS to collect data over a larger area in a short 

amount of time presents opportunities to evaluate a greater number of breeding lines in a given year. 

The estimated SDS values can then be used as the basis of selection, with at least the potential of 



eliminating the more susceptible genotypes. The use of aerial imagery and PI could potentially be 

most useful in early generation screening of large amounts of breeding material, and subsequent 

evaluation of selected material by breeders to ensure the proper characterization of the material to 

SDS. Future studies will include an early assessment of SDS to determine if SDS is detectable 

through broadband multispectral imagery before visible symptoms appear. Future work will include 

determining if PI can detect SDS before any visible symptoms are seen as well as if PI can be used 

for detection of other diseases impacting farmers across America. 

 

Project 2: Assessment of sudden death syndrome in soybean through 

multispectral broadband remote sensing aboard small unmanned aerial 

systems 

Background: The plant experiences stress-induced nutrient deficiencies, caused by the initial root 

infection, in the early stages of SDS. Worsening of SDS will eventually prohibit normal plant 

functions, namely evapotranspiration, to a point where the plant can no longer maintain 

homeostasis. These diseased plants should exhibit higher canopy temperatures than healthy plants, 

which could provide a proxy for measuring SDS severity.  

Thermal infrared (TIR) imagery measures an objects emitted radiation. The emitted radiation of an 

object can be used to derive the canopy temperature. Changes in plant canopy temperature can be 

caused by stress, disease, nutrient deficiencies and water stress. Mapping crop canopy temperature 

uses TIR imagery (Alves & Pereira, 2000; Ayeneh, van Ginkel et al., 2002; J. A. J. Berni, Zarco-

Tejada et al., 2009; Espinoza et al., 2017; Luo et al., 2018; X. Wang et al., 2010). TIR imagery is also 

used in the estimation of biomass (Gunawardena & Fernando, 2016; Maimaitijiang et al., 2017; 

Wooster et al., 2013), prediction of yields (Guan et al., 2017; Hecker, Smith et al., 2013; Leroux et 

al., 2016), assessment of fruit and crop quality (Berdugo et al., 2014; Sepulcre-Cantó et al., 2013; 

Sepulcre-Cantó et al., 2007; Zhao et al., 2005) and assessment of  water stress (Hong et al., 2019). 

Thermal evaluation of SDS for the determination of disease symptoms or severity has not yet been 

attempted. However, work from Berdugo et al. (2014), Calderón et al. (2014a), Chaerle et al. (2004), 

A. Mahlein et al. (2012), and Oerke et al., 2006 assess diseased and healthy plant temperatures under 

greenhouse conditions. These studies demonstrate that as early as two days after inoculation, 

temperatures of diseased plants can increase by 2⁰C or more as the disease progresses (Chaerle et al., 

2004; Oerke et al., 2006). Further work by Calderόn et al. (2013) and De Carolis et al. (1974) used 

thermal imaging to assess early detection of diseases in olive trees and rice. Both studies 

demonstrated that early disease detection is possible when using elevated canopy temperatures as the 

main indicator between diseased and healthy plants (Calderón et al., 2013; De Carolis et al., 1974).  

 The aim of this case study was to 1) demonstrate that SDS infected soybean exhibit elevated canopy 

temperatures, and 2) explore the temporal effects of disease progression using thermal imagery 

acquired by a small unmanned aerial system (sUAS).  

 Methods: An approach to compare SDS infected plants to healthy plants was established through 

the development of this case study. Naturally infected soybean over a typical growing season served 

as the sample population for this study. The relationship between canopy temperature and SDS 

score is assessed over several days after canopy closure is reached.    



Study Area 

The study area was located at the Kansas State University, Kansas River Valley Experiment Field 

outside Rossville, KS (39.11852°, -95.92459°) and was selected for its prevalent SDS history. The 

dominant soil in the field is Eudora silt loam. Irrigation was applied throughout the growing season 

to maintain adequate soil moisture and to help increase the severity of SDS. 

All plots had maturity and SDS ratings collected. Maturity was recorded as the number of days 

following 31 August when 95% of the pods on the plants had reached mature color. SDS ratings 

were taken at the R6 growth stage of the plants (Fehr et al., 1971).  

The experiment consisted of a Nested Association Mapping (NAM) population comprised of 140 

F5 derived lines from a cross between IA3023 and LD00-3309 along with checks for yield, and 

agronomic traits and susceptible and resistant checks for resistance to Soybean Sudden Death 

Syndrome (SDS), for 160 entries. The experiment used a randomized complete block design with 

four replications consisting of two-row plots 3.8 m long with 0.76 m between rows, and henceforth 

will be mentioned as plots for aerial imagery analysis. The field was planted on 9 May 2017 into corn 

stubble and application of pre-emergence herbicide prevented early season weed growth. 

Postemergence herbicide applications and hand weeding controlled weeds throughout the season. 

SDS was scored on two criteria, severity and incidence. Severity (Ds) addresses the severity of the SDS 

infection based foliar symptoms, on a scale of 0-9, as shown in Error! Reference source not found.. 

Scoring occurred at growth stage R6 on 6 September 2017. R6 is the growth stage where the seedpod cavity is 

filled, and seeds have reached full size. R6 is designated as an appropriate stage of development for SDS 

scoring due to the expression of the disease symptoms (Schmidt, 2007). 

Aerial imagery was acquired using a sUAS coupled with a thermal camera designed for sUAS use. 

The IRIS+ (3DR, Berkeley, California, USA) in combination with a FLIR VUE Pro R 19 mm 

thermal camera (FLIR Systems, Wilsonville, Oregon, USA) captured imagery for this study. The 

thermal camera measured spectral bands from 7.5-13.5 µm. Note: Results from this study may not 

be similar for cameras with wider lenses. 

Flights occurred four times toward the end of the season on 28 August, 3 September, 8 September, 

and 13 September. Flights began at 12:00 p.m. on each day. A flight altitude 77 m above ground 

level (AGL) allowed a flight time of 7 minutes covering an area of about 1.8 hectares with a spatial 

resolution of 6.89 cm/pixel. Side lap was set to 75% while front-to-back overlap was set to 85% to 

achieve a one-second camera trigger interval. The sUAS was programmed to fly at a ground speed 

of 3 m/s. Based on the preliminary studies conducted with different ground speeds, the 3 m/s 

ground speed provided images with minimal blur.  

Reference panels were instrumented to measure actual temperature and develop a temperature 

versus sensor digital response regressions function to calibrate and derive canopy temperatures from 

images. A canopy calibration is necessary as the thermal camera alone has an accuracy of +/- 5°C. 

Temperatures of reference panels were measured using surface-mounted thermistors (ON-930-

44033, Omega Engineering Inc., Stamford, Connecticut, USA) with a measurement accuracy of 

±0.1°C. Reference panels were painted black, grey, and white, while a water bath served as a fourth 

reference. The different colored panels and water bath provided different temperature gradients for 

canopy temperature calibration. Laboratory experiments showed that reference panels have uniform 

temperature across the surface. Air temperature were taken from the Mesonet network 



(http://mesonet.k-state.edu/about/network/) that operates a weather station located at 39.086 

latitude, -95.926 longitude, about  400 m from the experimental field. The weather stationed 

recorded air temperature with an accuracy of ±0.3°C @ 0 to 40°C. Weather conditions for all flights 

were clear and atmospherically stable with minimal wind.    

Data processing 

Sixteen plots each with high (SDS score of 25 and over), medium (SDS score of 8-17), and low (SDS 

score of 0-5) SDS were randomly selected for comparison for a total of 48 plots. Independent 

images from each day were analyzed in FLIR Tools (FLIR Systems, Wilsonville, Oregon, USA) to 

derive the canopy temperature of each plot. Temperature was derived from the emitted radiation of 

the plot captured by the sensor. FLIR Tools used the target’s emissivity, distance from the sensor to 

object (flight altitude AGL), relative humidity, and atmospheric temperature to derive the 

temperature. Emissivity was set at 0.94 nm (Guoquan & Zhengzhi, 1993; Rubio et al., 1997). 

Distance, relative humidity, and atmospheric temperature were set in camera settings in the field 

each day based on the daily conditions. Derived plot temperature was taken as the average 

temperature for that plot on a given day. The plots had complete canopy closure with no soil visible 

in the background; therefore, the area of each plot was drawn to derive average plot canopy 

temperature. The canopy temperature (Tc) was calculated for each plot for each day as the average 

canopy temperature over seven images (five consecutive images with the target plot visible in the 

middle during a single pass of the flight and one left and one right image) (Figure 2 and Table 4). 

Averaging over seven images eliminated bias that could occur due to changes in the angle between 

the canopy and sensor.    

Table 4 – Example average canopy temperature and standard deviation for two plots of each low, medium 

and high SDS from 3 September flight. Air temperature during flight was 28.6⁰C. The LT and RT represents 

image of the plot on the left and right side of the sUAS during flight. 

 

SDS 

SCORE 

PLO

T 

IMG 

1 (⁰C) 

IMG 

2 (⁰C) 

IMG 

3 (⁰C) 

IMG 

4 (⁰C) 

IMG 

5 (⁰C) 

SIDE 

LT 

(⁰C) 

SIDE 

RT 

(⁰C) 

AVG 

(⁰C) 

STD 

DIV 

0.0 302 25.4 25.4 25.3 25.3 25.4 26.1 23.8 25.4 0.09 

0.6 4 24.7 24.8 24.9 24.3 24.6 26.7 23.7 24.7 0.23 

10.0 24 26.3 26.4 26.4 25.6 25.8 28.3 25.9 26.1 0.38 

11.1 101 26.0 26.2 26.4 26.3 26.3 27.7 25.3 26.2 0.15 

85.0 165 28.2 27.9 28.5 28.1 28.4 29.3 27.8 28.2 0.23 

100.0 121 28.4 27.7 27.9 28.4 28.4 28.6 27.6 28.2 0.34 

 



 

 

Figure 2 – Example sequence of image selection for calculation of average canopy temperature. Plot 

121 circled to show relative position in each image. 

Results: Average canopy temperature for all four flying dates varied between 21.2º C and 27.8º C, 

with standard deviation varying from 1.03º C to 1.53º C.  Table 2 shows an example of the canopy 

temperature averaging over seven images. Six plots (two low, two medium, and two high SDS 

scores) were chosen in the example. These results indicated the TIR sensor had a consistent 

response to canopy emittance for the series of images taken over the plots. It is also evident from 

the results that the canopy temperature was consistent when capturing canopy emitted radiation 

from different angles during multiple passes of the flight. Overall, these results are specifically 

observed for 19 mm thermal camera, and results may be different when using a 13 mm or a 9mm 

thermal camera. Temperature difference was compared to SDS scoring for each day flown to assess 

the relationship between temperature and SDS prevalence for each day. Each study period presented 

significance (P < 0.0001) in the relationship between temperature and SDS score, incidence, and 

Image 1 Image 2 Image 3 

Image 5 Image 4 

Image 6 – Right Side Image 7 – Left Side 

 
  



severity. Figure 3 displays the temperature difference of each day compared to SDS score. 

Spearman’s rho correlation increased throughout the growing season with a moderate correlation 

observed for 28 August (ρ = 0.5344) and the strongest correlation observed for 13 September (ρ = 

0.7404). Temperature difference exhibited a positive correlation to the SDS score for each day, with 

larger temperature differences observed in the plots with higher SDS scores.  A steady increase in 

Tc-Ta is seen from 28 August to 13 September. This difference becomes more pronounced in the 

plants with high SDS infection. Plots with low SDS infection maintain canopy temperatures below 

the air temperature. On 3 September highly infected plant canopy temperatures begin approaching 

the air temperature. By 8 September most highly and moderately infected plots have canopy 

temperatures above the air temperature. 

 

Figure 3 - SDS score to Tc-Ta (temperature difference) for each day of UAS flight. Equation for line 

of fit and Spearman’s rho (ρ) are given for each plot. Correlation coefficients that were statistically 

significant (P<0.0001) are indicated by an asterisk. 

Ta = 26.7 ºC 

Y = 0.0364X-0.989 

Ta = 28.6 ºC 

Y = 0.0323X-2.1167 

Ta = 24.2ºC 

Y = 0.0237X-3.5425 

Ta = 28.6 ºC 

Y = 0.041X-5.4385 



Strong correlations were observed between temperature difference and SDS severity and incidence for each 

of the four sUAS flights (Figure 44 and Figure 5). Both severity and incidence displayed similar statistical 

significance and correlation to temperature difference for a given day. As evident in Figure 4 and 5, both severity 

and incidence for 3 September displayed a low temperature difference compared to other days of flight 

including 28. The general trend for each day demonstrates that higher temperature reflected greater extent of 

SDS infection in plants within a plot. The overall increase in correlation demonstrates the progression of the 

disease over the growing season. SDS scores were taken on 6 September when visual symptoms were reaching 

maximum expression. However, affected plots began showing symptoms two weeks earlier than the SDS rating 

were measured (i.e. SDS scoring). 28 August exhibited few visual symptoms of SDS but exhibited higher 

temperatures due to stress caused by SDS. Early detection of SDS infection could lead to increased yields if 

mitigation steps could be implemented before visual symptoms develop. 
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Figure 4 - Severity of infection to Tc-Ta (temperature difference for each day of UAS flight. 

Equation for line of fit and Spearman’s rho (ρ) are given for each plot. Correlation coefficients 

that were statistically significant (P<0.0001) are indicated by an asterisk. 

 

Figure 5 - Incidence of infection to Tc-Ta (temperature difference) for each day of UAS flight. 

Equation for line of fit and Spearman’s rho (ρ) are given for each plot. Correlation coefficients 

that statistically significant (P < 0.0001) are indicated by an asterisk. 

 

Conclusions: Previous studies showed that thermal assessment of disease was possible through 

aerial platforms. This case study demonstrated that an infield assessment of soybean SDS using a 

TIR camera and sUAS system was possible. Correlations with temperature difference and SDS score 

increased throughout the growing season. Correlations with disease incidence and severity also 

increased through the growing season with the largest correlations toward the end of the seed fill 

Ta = 28.6 ºC 

Y = 0.031X-5.7221 

Ta = 24.2 ºC 

Y = 0.0187X-3.738 

Ta = 26.7 ºC 

Y = 0.0324X-1.4374 

Ta = 28.6 ºC 

Y = 0.0269X-2.4414 



period Overall assessment of incidence displayed the highest relationship in correlation over the 

days flown while severity maintained a similar relationship. Severity of SDS infection is the most 

practical predictor of SDS for large application use because of its high correlation and easy 

application.  

This case study exhibits the potential use of TIR remote sensing for detection of SDS in soybean. 

While correlations at the beginning of the flight period were moderate, they have potential to act as 

predictors to SDS within a field and give preliminary indications of the disease before visual 

symptoms appear. Future studies will expand this research to assess disease over an entire field and 

determine when the earliest that definable SDS symptoms are present.   
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